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Lecture 1 - Thursday, September 05

1 Optimization Problem

Definition 1.1: Optimization Problem

Given S ⊂ Rn and a function f : Rn → R, and optimization problem is a problem of the form:

max f(x) s.t. x ∈ S (opt)

where

1. S is called feasible region;

2. A point x̄ ∈ S is called a feasible solution;

3. f(x̄) is objective function valued at x̄.

Remark: (opt) stands for

Find x∗ ∈ S such that f(x) ≤ f(x∗) for all x ∈ S

If x∗ is found, it is called an optimal solution and f(x∗) is optimal value.

Discovery 1.1: Alternative ways of writing (opt)

max{f(x) : x ∈ S} or maxx∈Sf(x)

Definition 1.2:

Analogous definitions hold for minimization as well.

Result 1.1

Notice that we have [
maxf(x) s.t. x ∈ S

]
=
[
(−1) ·min(−f(x)) s.t. x ∈ S

]
This tells that

x∗ is opt for max problem ⇐⇒ x∗ is opt for min problem

and f(x∗) = −1 · (−f(x∗)).

1.1 Problems encountered

We may find problems when solving optimization problems: Optimal solution may not exist:
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1. S = ∅ (problem is infeasible);

2. (opt) may be unbounded, i.e. ∀ α ∈ R, ∃ x ∈ S such that f(x) > α;

3. Optimal solution does not exist because of limits.

Example 1.1

An example would be
min ex s.t. x ∈ R

Definition 1.3: Supremum

We have

sup{f(x) : x ∈ S} =


−∞ if S = ∅

+∞ if (opt) is unbounded
min{ζ ∈ R : ζ ≥ f(x) ∀ x ∈ S} otherwise

Now supremum always exists and is well-defined.

Definition 1.4: Infimum

In terms of infimum, we have
inf
x∈S

f(x) = − sup
x∈S

(−f(x))

2 Linear Programs (LP)

Definition 2.1: Linear Program

In LPs,
S = {x ∈ Rn : Ax ≤ b}

where A ∈ Rm×n, b ∈ Rm and f(x) = cT x for some c ∈ Rn. i.e. an LP has the form

max cT x s.t. Ax ≤ b

Strick inequalities are NOT allowed.

Definition 2.2: Inequality in Rm

For u, v ∈ Rm,
u ≤ v ⇐⇒ ui ≤ vi, ∀ i = 1, . . . , m

5



Discovery 2.1

Notice that for u, v ∈ Rm,
u ̸≤ v is not the same as u > v

Example 2.1

As an example, consider the LP:

max 2x1 + 0.5x2 s.t.

x1 ≤ 2
x2 ≤ 2
x1 + x2 ≤ 3
x ≥ 0

Solution: Thus we have


1 0
0 1
1 1
−1 0
0 −1


(

x1

x2

)
≤
(

2 2 3 0 0
)

x1

x2

x1 = 2

x2 = 2

x1 + x2 = 3(2, 0)

(0, 2) (1, 2)

Therefore the optimal solution in this case would be the point (2, 1). 2

Lecture 2 - Tuesday, September 10

Definition 2.3: Halfspace, Hyperplane, and Polyhedron

Given f ∈ Rn, d ∈ R, the set
{x ∈ Rn : fT x ≤ d}

is called a halfspace. The set
{x ∈ Rn : fT x = d}

is called a hyperplane.

Discovery 2.2

A hyperplane is a generalization of the plane in d-dimensional space, it divides the space into two
halfspaces.

The set
{x ∈ Rn : Ax ≤ b}

6



is called a polyhedron.

Discovery 2.3

Notice that a polyhedron is the intersection of numerous (finitely many) halfspaces.

2.1 Determining Feasibility

The question is: Is
{x ∈ Rn : Ax ≤ b} = ∅

Notice that for n = 1, the problem is easy to solve. For the case when n = 0, we define Ax to be the zero
vector, thus all that we need to do is to check if b has all its components non-negative. For the general case,
the idea is: We wish to reduce the problem to a lower dimension (inductively), so we can solve problems
with higher dimensions.

Definition 2.4:

Let S = {(x, y) ∈ Rn × Rp : Ax + Gy ≤ b}, then

projx(S) := {x ∈ Rn : ∃ y ∈ Rp s.t. (x, y) ∈ S}

i.e., the (orthogonal) projection of S onto x.

Example 2.2

x

y

S

projxS

Discovery 2.4

Suppose P = {x ∈ Rn : Ax ≤ b}, then

P ̸= ∅ ⇐⇒ projx1,...,xn−1(P ) ̸= ∅

In other words, the non-emptiness of the polyhedron is equivalent to the the non-emptiness of all the
projections.
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1. Let aij ’s to be the entries of A;

2. Let

• M = {1, . . . , m};

• M+ = {i ∈M : ain > 0};

• M− = {i ∈M : ain < 0};

• M0 = {i ∈M : ain = 0};

Notice that

Ax ≤ b ⇐⇒
n∑

j=1
aijxj ≤ bi ∀ i = 1, . . . , m

⇐⇒
n−1∑
j=1

aijxj + ainxn ≤ bi ∀ i = 1, . . . , m

⇐⇒



n−1∑
j=1

aij

ain
xj + xn ≤

bi

ain
∀ i = M+

n−1∑
j=1

aij

ain
xj + xn ≥

bi

ain
∀ i = M−

n−1∑
j=1

aijxj ≤ bi ∀ i = M0

(1)

(2)

(3)

By combining (1) and (2) to cancel the like terms, we define

n−1∑
j=1

(
aij

ain
− akj

akn

)
xj ≤

(
bi

ain
− bk

akn

)
, ∀ i ∈M+, k ∈M− (4)

Lemma 2.1

We have
projx1,...,xn−1(P )︸ ︷︷ ︸

∗

= {x ∈ Rn−1 : 3 and 4}︸ ︷︷ ︸
∗∗

In other words,
∃ xn : (x1, . . . , xn) ∈ P ⇐⇒ {x ∈ Rn−1 : 3 and 4}

Proof. Let x ∈ Rn−1 satisfy (∗), then there exists xn such that (x1, . . . , xn) ∈ P , and this implies that (3)
holds. But also (1) and (2) hold, and since (4) was obtained from (1) and (2), we conclude that (4) also
holds. This tells us that

projx1,...,xn−1(P ) ⊆ {x ∈ Rn−1 : 3 and 4}
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Now let x ∈ Rn−1 satisfy (∗∗). Then (because it satisfies (4)), we have

n−1∑
j=1
− akj

akn
xj + bk

akn
≤

n−1∑
j=1
− aij

ain
xj + bi

ain
∀ i ∈M+, k ∈M−

Pick xn = maxk∈M−{LHS}, because we have both

n−1∑
j=1
− akj

akn
xj + bk

akn
≤ −xn and − xn ≤

n−1∑
j=1
− akj

akn
xj + bk

akn

so (x1, . . . , xn) ∈ P .

2.2 Fourier-Motzkin Elimination

Let An = A, and bn = b. Given Ai, bi, obtain Ai−1 (i− 1 columns) and bi−1,

Pi = {x ∈ Ri : Aix ≤ bi} ≠ ∅ ⇐⇒ Pi−1 = {x ∈ Ri−1 : Ai−1x ≤ bi−1} ≠ ∅

Definition 2.5:

We denote
P n

i = Pi × Rn−i ⊆ Rn

Discovery 2.5

Therefore we have
Pi = ∅ ⇐⇒ P n

i = ∅

and
P n

i = Pi × Rn−i = {x ∈ Rn : (Ai, 0)x ≤ bi}

Lecture 3 - Thusday, September 12

Example 2.3

We start with

P2 = P 2
2 =

x ∈ R2 :

x1 + 2x2 ≤ 1
−x1 ≤ 0
−x2 ≤ −2
−3x1 − 3x2 ≤ −6


Thus we have

A2 =


1 2
−1 0
0 −1
−3 −3

 and b2 =


1
0
−2
−6
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Moreover, we have

1. M+ = {1};

2. M− = {3, 4};

3. M0 = {2}.

Using the method introduced above, after scaling each inequality so that the coefficients of x2 is either
1 or -1, we get

x1 + 2x2 ≤ 1
−x1 ≤ 0
−x2 ≤ −2
−3x1 − 3x2 ≤ −6

⇒

1
2 x1 + x2 ≤ 1

2
−x1 ≤ 0
−x2 ≤ −2
−x1 − x2 ≤ −2

Combining equation 1 and 3, 1 and 4 yields us

P1 =

x ∈ R1 :
−x1 ≤ 0
1
2 x1 ≤ − 3

2
− 1

2 x1 ≤ − 3
2


Thus we have

A1 =

−1
1
2
− 1

2

 and b1 =

 0
− 3

2
− 3

2


Now we have

P 2
1 =

x ∈ R2 :
−x1 ≤ 0
1
2 x1 ≤ − 3

2
− 1

2 x1 ≤ − 3
2

 ⇒
−x1 ≤ 0
x1 ≤ −3
−x1 ≤ −3

Now we have

1. M+ = {2};

2. M− = {1, 2};

3. M0 = ∅.

Since

P 2
0 =

{
x ∈ R2 : 0 ≤ −3

0 ≤ −6

}
We now know that P2 = ∅.

Discovery 2.6: Important

1. If Ai, bi are rational, then Ai−1, bi−1 are also rational.

2. All inequalities in P n
i are non-negative combinations of Ax ≤ b.

3. If b = 0, then bi = 0 for all i.
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2.3 Farkas’ Lemma

Theorem 2.1: Farkas’ Lemma

We have
P = {x ∈ Rn : Ax ≤ b} = ∅ ⇐⇒ ∃ u ∈ Rm s.t. uT A = 0, uT b < 0, u ≥ 0

Proof. For the backward direction: Suppose x̄ ∈ P , then Ax̄ ≤ b. Because we know that u ≥ 0, so
uT Ax̄ ≤ uT b. Therefore, 0 ≤ uT b < 0 yields a contradiction.
For the forward direction: Suppose we know that

P = {x ∈ Rn : Ax ≤ b} = ∅

By Fourier-Motzkin, we have P n
0 = ∅. This implies that there exists i such that b0

i < 0. Since (0)x ≤ b0 is
a non-negative combination of Ax ≤ b. The constraint corresponding to b0

i can be obtained as:

uT Ax ≤ uT b, for some u ≥ 0

Have uT A = 0 and uT b = b0
i < 0.

Definition 2.6: Certificate of Infeasibility

u is called a certificate of infeasibility.

Corollary 2.1: Farkas’ Lemma Equivalent Statement

Exactly one of the following has a solution:

1. ∃ x ∈ Rn s.t. Ax ≤ b;

2. ∃ u ∈ Rm s.t. uT A = 0, uT b < 0, u ≥ 0.

2.3.1 Farkas’ Lemma (Alternative Form)

Theorem 2.2

Exactly one of the following has a solution:

1. Ax = b, x ≥ 0;

2. uT b < 0, uT A ≥ 0.

Proof. Exercise.
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2.4 Fundamental Theorem of LP

Theorem 2.3: Fundamental Theorem of LP

Recall that an LP has the form
max cT x s.t. Ax ≤ b (LP)

then (LP) always has exactly one of the three possible outcomes:

1. infeasible;

2. unbounded;

3. there exists an optimal solution.

Proof. Suppose (1) and (2) are not true. If n = 1, then the problem has an optimal solution. Otherwise, we
define

max z s.t. z − cT x ≤ 0 ∧ Ax ≤ b (LP′)

It is clear that (LP ′) is neither infeasible or unbounded. Also, if (x∗, z∗) is optimal solution for (LP ′), then
x∗ is optimal solution for (LP ). Apply Fourier-Motzkin to{

(x, z) : z − cT x ≤ 0
Ax ≤ b

}

until we get
{z ∈ R : A1z ≤ b1}

Then the problem becomes
max z s.t. A1z ≤ b1

which is obviously solvable. Solving this problem to obtain the optimal solution z∗. Reconstruct using
Fourier-Motzkin the optimal solution (x∗, z∗) to (LP ′).

Lecture 4 - Thursday, September 19

Discovery 2.7

The Fundamental Theorem of LP applies to ANY LP.
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3 Determining Optimality

Using an example for illustration:

Example 3.1

max 2x1 + x2 s.t.
x1 + 2x2 ≤ 2
x1 + x2 ≤ 2
x1 − x2 ≤ 0.5

Easy to notice that x̄ =
(

0
1

)
is a feasible solution, but the question is whether or not x̄ is optimal. It

is easy to observe that the answer is no, since we have x∗ =
(

1
0.5

)
is a better solution. However, here

comes another question. Is x∗ optimal?
Notice that any feasible solution satisfies:

x1 + 2x2 ≤ 2
(
× 1

3
)

x1 + x2 ≤ 2 (×1)
x1 − x2 ≤ 0.5

(
× 2

3
) ⇒sum 2x1 + x2 ≤ 3

Notice that alternatively, we may also have

x1 + 2x2 ≤ 2 (×1)
x1 + x2 ≤ 2 (×0)
x1 − x2 ≤ 0.5 (×1)

⇒sum 2x1 + x2 ≤ 2.5

This verifies that x∗ =
(

1
0.5

)
is our optimal solution in this particular example.

Discovery 3.1

In general,

x1 + 2x2 ≤ 2 (×y1)
x1 + x2 ≤ 2 (×y2)
x1 − x2 ≤ 0.5 (×y3)

⇒sum (y1 + y2 + y3)x1 + (2y1 + y2 − y3)x2 ≤ 2y1 + 2y2 + 0.5y3

As long as yi ≥ 0 for all i, y1 + y2 + y3 = 2, and 2y1 + y2 − y3 = 1, we have

cT x ≤ 2y1 + 2y2 + 0.5y3

for any feasible solution x.
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Result 3.1

To get the best possible upper bound, we should solve:

min 2y1 + 2y2 + 0.5y3 s.t.
y1 + y2 + y3 = 2
2y1 + y2 − y3 = 1
y1, y2, y3 ≥ 0

Definition 3.1: Dual

The above LP is called a dual LP.

In general, we have

Definition 3.2: Primal

max cT x s.t. Ax ≤ b (P)

min bT y s.t. AT y = c

y ≥ 0
(D)

3.1 Weak Duality Theorem

Theorem 3.1: Weak Duality

If x̄ is feasible for (P ), ȳ is feasible for (D), then

cT x ≤ bT y

Proof. If x̄ is feasible for (P ), then
Ax̄ ≤ b

But since ȳ is feasible for (D) (particularly that ȳ ≥ 0):

cT x̄ = (AT ȳ)T = ȳT Ax̄ ≤ ȳT b = bT ȳ

as desired.

Discovery 3.2

1. There is one variable in (D) for every constraint in (P ). In other words, the size of y is the same
as the size of b.

2. There is one constraint in (D) for every variable in (P ) (plus the non-negativity).

14



Corollary 3.1

If (P ) is unbounded, then (D) is infeasible.

Corollary 3.2

If (D) is unbounded, then (P ) is infeasible.

Exercise: There are examples where (P ) and (D) are both infeasible.

Corollary 3.3

If x∗ is feasible for (P ), y∗ is feasible for (D), and cT x∗ = bT y∗, then x∗ is the optimal solution for (P )
and y∗ is the optimal solution for (D).

Result 3.2: Possible Outcomes

(D) \ (P) unbounded infeasible optimal
unbounded NO YES NO
infeasible YES YES ?
optimal NO ? ?

3.2 Strong Duality Theorem

Theorem 3.2: Strong Duality

If (P ) has an optimal solution, denoted as x∗, then (D) also has an optimal solution y∗ such that

cT x∗ = bT y∗

Proof. Part 1: We first prove that (D) is feasible.
Suppose (D) is infeasible, i.e., {

y ∈ Rm : AT y = c

y ≥ 0

}
= ∅

By the alternative form of Farkas’ Lemma, we know that

∃ u s.t. uT AT ≥ 0
uT c < 0

⇐⇒ ∃ u s.t. Au ≥ 0
cT u < 0

⇐⇒ ∃ d s.t. Ad ≤ 0
cT d > 0

But then x∗ + d is feasible for (P ) since

A(x∗ + d) = Ax∗ + Ad ≤ b + 0

However, notice that
cT (x∗ + d) = cT x∗ + cT d > cT x∗
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which contradicts the fact that x∗ is our optimal solution for (P ), thus we must have that (D) is feasible.
Part 2: By the Fundamental Theorem of LP and Weak Duality Theorem, (D) has an optimal solution.
Part 3: denote γ = bT y∗, and we consider

Θ =
{

x ∈ Rn : Ax ≤ b

−cT x ≤ −γ

}

If Θ = ∅, then by Farkas’ Lemma,

∃

(
y

λ

)
:

(
y

λ

)T (
A

−cT

)
= 0(

y

λ

)T (
b

−γ

)
< 0(

y

λ

)
≥ 0

⇐⇒ ∃ y ∈ Rm, λ ∈ Rn :
AT y = cλ

yT b < λγ

y ≥ 0, λ ≥ 0

1. Case 1 : λ > 0
Hence we have

AT (y/λ) = c

bT (y/λ) < γ

(y/λ) ≥ 0

which contradicts the fact that y∗ is the optimal solution for (D).

2. Case 2 : λ = 0
Hence we have

AT y = 0
bT y < 0
y ≥ 0

Now we have
AT (y∗ + y) = AT y∗ + AT y = AT y∗ = c

but
bT (y∗ + y) = bT y∗ + bT y < bT y∗

which again contradicts the fact that y∗ is the optimal solution for (D).

Lecture 5 - Tuesday, September 24

Definition 3.3: Certificate of Optimality

The y∗ introduced above is a certificate of optimality.

16



Result 3.3

In general, same results hold for

max cT x s.t. Ax ? b

x ? 0
(P)

min bT y s.t. AT y ? c

y ? 0
(D)

where the ? are replaced in regards to the chart below:

(P) max (D) min

Constr
≤
≥
=

Var
≥ 0
≤ 0
free

Var
≥ 0
≤ 0
free

Constr
≥
≤
=

Example 3.2

max 2x1 + 3x2 − 4x3 s.t.

x1 +7x3 ≤ 5
2x2 −x3 ≥ 3

x1 +x3 = 8
x2 ≤ 6

x1 ≥ 0, x2 ≤ 0

(P)

Then we would have the dual represented as

min 5y1 + 3y2 + 8y3 + 6y4 s.t.

y1 +y3 ≥ 2
2y2 +y4 ≤ 3

7y1 −y2 +y3 = −4
y1 ≥ 0, y2 ≤ 0, y4 ≥ 0

3.3 What if primal is minimization

Example 3.3

min x1 − x2 s.t.

2x1 +2x2 ≤ 5
x1 −x2 ≥ 3
x1 5x2 = 7

x1 ≥ 0, x2 ≤ 0

(P)

17



max 5y1 + 3y2 + 7y3 s.t.
2y1 +y2 +y3 ≤ 1
3y1 −y2 +5y3 ≥ −1

y1 ≤ 0, y2 ≥ 0
(D)

Notice that here we use the “opposite” of the above chart.

Theorem 3.3: Weak Duality for Primal as a Minimalization

If x̄ is feasible for (P ) and ȳ is feasible for (D), then

cT x̄ ≥ bT ȳ

Theorem 3.4

Strong duality still holds for (P ) in minimization form.

Discovery 3.3

If (P ) is primal and (D) is dual, then the dual of (D) is (P ).

3.4 Interpretations of the dual

3.4.1 Maximizing Profit

I wish to decide how much of two products to produce, and I have two resources available:

Per unit profit Resource Consumption A Resource Consumption B
Product A 5 2 3
Product B 3 4 1

Suppose we have 15 units of resource A and 10 units of resource B. Therefore we wish to solve

max 5x1 + 3x2 s.t. 2x1 +4x2 ≤ 15
3x1 +x2 ≤ 10

Suppose I am willing to sell resource A for y1 dollars and resource B for y2 dollars. Notice that with 2 units
of resource A and 3 units of resource B, I earn at least $5, thus

2y1 + 3y2 ≥ 5

Similarly,
4y1 + y2 ≥ 3

Thus I wish to solve

min 15y1 + 10y2 s.t. 2y1 +3y2 ≥ 5
4y1 +y2 ≥ 3

to figure out the least amount I could sell the resources for.

18



3.4.2 Vertex Cover Problem

Suppose I have the following: Three job candidates A, B, and C applying for two job positions. A, B, and
C applied for job position 1 and C has applied for job position 2.

A B C

Job 1 Job 2

x11

x21

x31

x32

What is the largest number of matches?
We wish to solve

max x11 + x21 + x31 + x32 s.t.

x11 ≤ 1
x21 ≤ 1

x31 +x32 ≤ 1
x11 +x31 ≤ 1

x21 +x32 ≤ 1
x ≥ 0

Remark: the optimal solution to this is integral (not proven yet).
Notice that the dual for this problem would become

min y1 + y2 + y3 + y4 + y5 s.t.

y1 +y4 ≥ 1
y2 +y5 ≥ 1

y3 +y4 ≥ 1
y3 +y5 ≥ 1

y ≥ 0

Definition 3.4: Vertex Cover Problem

Pick set of vertices with the minimum size such that every line (edge) touches at least one of the vertices
in the picked set.

Theorem 3.5

The optimal solution to the LP above (Vertex Cover Problem) has all variable either 0 or 1.

Lecture 6 - Thursday, September 26
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4 Graphs

Definition 4.1: Graph

A graph G is denoted by G = (V, E), where V is a finite set representing the vertices (nodes) and E

is a subset of pairs of vertices, or the set of edges.

Example 4.1

1

2

3

4

Thus we have

V = {1, 2, 3, 4}
E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}}

Definition 4.2: Endpoint & Incident

A vertex v is an endpoint of an edge e if v is one of the vertices in the pair of e. In this case, we say
edge e is incident of v.

Example 4.2

In the above example, node 2 is an endpoint of edge {2, 4} (sometimes we write edge 24 for simplicity),
and edge 24 is incident to 2, and 4.

Definition 4.3:

We define
δ(v) := {e ∈ E : e is incident to v}

Definition 4.4:

Let S ⊆ V , we define
δ(S) := {uv ∈ E : u ∈ S ∧ v /∈ S}

Definition 4.5: Adjacent

Two vertices u, v ∈ V are adjacent if {u, v} ∈ E.
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Definition 4.6: Bipartite

A graph G is called bipartite if V = A ⊔B. Consequently, if

u, v are adjacent ⇒ u ∈ A ∧ v ∈ B

Example 4.3

A

B

C

1

2

3

4.1 Max Cardinality Matching in Bipartite Graphs

Definition 4.7: Matching

M ⊆ E is called a matching if
|δ(v) ∩M | ≤ 1, ∀ v ∈ V

Here is the problem: Given G = (A ⊔B, E) a bipartite, we wish to find the matching M of G with
largest cardinality.

Definition 4.8: Decision Variables

We define

xe :=

 1 if e ∈M

0 if e /∈M

Therefore, our problem becomes

max
∑
e∈E

xe s.t.

∑
e∈δ(v) xe ≤ 1 ∀ v ∈ V

0 ≤ xe ≤ 1, ∀ e ∈ E

x ∈ ZE

Recall that for the dual, we have one variable for each of the constraints, thus we may write down the dual:

min
∑
v∈V

yv s.t. yu + yv ≥ 1 ∀ uv ∈ E

yv ≥ 0, ∀ v ∈ V
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Example 4.4

Here is another example. Consider G = (V, E) as a given graph. Let ce ≥ 0 for all e ∈ E be edge costs.
Denote the decision variable as xe for all e ∈ E.
Consider the LP:

min
∑
e∈E

cexe s.t.

∑
e∈δ(v)

xe = 2, ∀ v ∈ V∑
e∈δ(s)

xe ≥ 2, ∀ S ⊊ V ∧ |S| > 1

x ≥ 0

Now we have the dual:

min 2
∑
v∈V

yv + 2
∑

S⊊V :|S|>1

yS s.t.
yu + yv +

∑
S⊊V :|S|>1∧uv∈S

yS ≤ cuv, ∀ uv ∈ E

yS ≥ 0, ∀ S ⊊ V : |S| > 1

4.2 Complementary Slackness

Theorem 4.1

Let x∗ be feasible for primal LP, y∗ be feasible for dual LP. Then

(i). Either x∗
j = 0, or the corresponding dual constraint is tight at y∗, for all j = 1, . . . , n;

(ii). Either y∗
i = 0, or the corresponding dual constraint is tight at x∗, for all i = 1, . . . , m.

(inclusive or, could be both).

Example 4.5

Suppose we have primal:

min x1 − x2 s.t.

2x1 +3x2 ≤ 5
x1 −x2 ≥ 3
x1 +5x2 = 7

x1 ≥ 0, x2 ≤ 0

Thus the dual would be:

max 5y1 + 3y2 + 7y3 s.t.
2y1 +y2 +y3 ≤ 1
3y1 −y2 +5y3 ≥ −1

y1 ≤ 0, y2 ≥ 0

Solution: Then the C.S. tells us that
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1. • x∗
1 = 0 or 2y∗

1 + y∗
2 + y∗

3 = 1;

• x∗
2 = 0 or 3y∗

1 − y∗
2 + 5y∗

3 = −1;

2. • y∗
1 = 0 or 2x∗

1 + 3x∗
2 = 5;

• y∗
2 = 0 or x∗

1 − x∗
2 = 3;

• y∗
3 = 0 or x∗

1 + 5x∗
2 = 7;

as an example. 2

Theorem 4.2: C.S.

Let x∗ be feasible for primal and y∗ be feasible for dual, TFAE:

1. x∗ is optimal solution for primal and y∗ is optimal solution for dual;

2. cT x∗ = bT y∗;

3. x∗ and y∗ satisfy C.S.

Lecture 7 - Tuesday, October 01

Proof. [1] ⇐⇒ [2] This holds because this is equivalent to strong duality.
[2] ⇐⇒ [3] Assume we have

max cT x s.t. Ax ≤ b

x ≥ 0
(P)

min bT y s.t. AT y ≥ c

y ≥ 0
(D)

We know that
cT x∗ =

n∑
j=1

cjx∗
j

and the constraint of the dual gives us that

cj ≤
m∑

i=1
aijy∗

i

Because x ≥ 0, we have

cjx∗
j ≤

m∑
i=1

aijy∗
i x∗

j (1)

hence we have

cT x∗ ≤
n∑

i=1

 m∑
j=1

aijx∗
j

 y∗
i

Feasibility of (P ) yields that

n∑
j=1

aijx∗
j ≤ bi ∀ i ⇒

 n∑
j=1

aijx∗
j

 y∗
i ≤ biy

∗
i (2)
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Therefore, we have

cT x∗ ≤
m∑

i=1
biy

∗
i = bT y∗

where the equality holds if and only if (1) and (2) both hold for equalities if and only if C.S. holds.

4.2.1 Geometric Interpretations of C.S.

max cT x s.t. Ax ≤ b (P)

min bT y s.t. AT y = c

y ≥ 0
(D)

We know that A can be written in the form of

A =


−−− aT

1 −−−
−−− aT

1 −−−
...

−−− aT
m −−−


C.S. (ii) tells us that

y∗
i = 0 or aT

i x∗ = bi

and we know
AT y = c ⇐⇒

m∑
i=1

aiyi = c

and y∗
i = 0 for all constraints that are not tight at x∗. Thus, c is a non-negative combination of coefficients

that are tight constraints.

Example 4.6

Consider the example

max 2x1 + 0.5x2 s.t.

x1 ≤ 2
x2 ≤ 2

x1 +x2 ≤ 3
x ≥ 0
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x1

x2

c

not optimal

optimal, cannot be improved

Discovery 4.1

c is a non-negative combination of coefficients that are tight constraints if and only if c is in the cone
of tight constraints.

4.3 Characterizing Unboundedness

Theorem 4.3

The problem
max cT x s.t. Ax ≤ b

is unbounded if and only if it is feasible, and

∃ d : Ad ≤ 0, cT d > 0

Proof. [⇐=] Let x̄ be such that Ax̄ ≤ b, then for any α ∈ R, consider x∗ + βd for β ≥ 0, we have

A(x∗ + βd) = Ax∗ + βAd ≤ b

and
cT (x∗ + βd) > α

for some choice of β > 0, since

cT x∗ + βcT d > α for β >
α− cT x∗

cT d

[=⇒] Consider the dual

min bT y s.t. AT y = c

y ≥ 0
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We know that (P ) is unbounded implies that (D) is infeasible. Thus by Farkas’ lemma, we know that there
exists u ∈ Rn such that uT At ≥ 0 and uT c < 0. Take d = −u.

4.4 Geometry of polyhedra

Definition 4.9: Line Segment

Given x̄, ȳ ∈ Rn, the line segment between x̄ and ȳ is the set of points

{x ∈ Rn : x = λx̄ + (1− λ)ȳ s.t. λ ∈ [0, 1]}

Definition 4.10: Convex

A set S ⊆ Rn is a convex set if for all x̄, ȳ ∈ S, the line segment between x̄ and ȳ is contained in S.

Result 4.1

∅ is convex.

Example 4.7

x̄

ȳ

Convex.

x̄

ȳ

Not convex.

Discovery 4.2

Polyhedra are convex sets.

Proof. For
P = {x ∈ Rn : Ax ≤ b}

Let x̄, ȳ ∈ P , and λ ∈ [0, 1]. We have

A[λx̄ + (1− λ)ȳ] ≤ λb + (1− λ)b

as desired.
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Definition 4.11: Convex Combination

Generally, for x1, . . . , xk ∈ Rn, we say that x is a convex combination of x1, . . . , xk if there exists
λ1, . . . , λk ∈ R such that

x =
k∑

i=1
λixi

with
∑

i λi = 1 and λi ≥ 0 for all i = 1, . . . , k.

Example 4.8

x1

x2

x3 x4

x5

x6

x7 The region enclosed by the shape to the left is the
set of all possible convex combinations of x1, . . . , x7.

Discovery 4.3

The idea is that optimal solution happens at “corners”.
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4.5 Basic Definitions in Polyhedra

Let P = {x ∈ Rn : Ax ≤ b}.

Definition 4.12: Extreme Point

x̄ ∈ P is an extreme point of P if ̸ ∃ u, v ∈ P\{x̄} and λ ∈ [0, 1] such that x̄ = λu + (1− λ)v.

Definition 4.13: Basic Feasible Solution

x̄ ∈ P is a basic feasible solution if there exist n linearly independent constraints aT
i x ≤ bi that

tight at x̄.

Definition 4.14: Vertex

x̄ ∈ P is a vertex of P if there exists c ∈ Rn so that x̄ is the unique optimal solution to max cT x such
that x ∈ P .
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Theorem 4.4

TFAE:

1. x̄ is a vertex of P ;

2. x̄ is a basic feasible solution of P ;

3. x̄ is an extreme point of P .

Proof. [1 ⇒ 3]:
Suppose x̄ is not an extreme point, so

x̄ = λu + (1− λ)v for u, v ∈ P\{x̄}, λ ∈ (0, 1)

and this gives us that cT x̄ = λcT u + (1 − λ)cT v for any c ∈ Rn. However, for x̄ to be the unique optimal
solution, we would have

cT x = λcT x + (1− λ)cT x > λcT u + (1− λ)cT v

which holds for strick inequality. Notice that we now obtain a contradiction, thus x̄ is a vertex of P implies
that x̄ is an extreme point of P .
[3 ⇒ 2]:
Suppose x̄ is not a basic feasible solution. Let I ⊆ {1, . . . , m} be the indices of constraints tight at x̄, and
AI be the matrix obtained by deleating the rows from A that are not in I. Hence we have

rank(AI) < n

Consider AId = 0. By rank-nullity theorem, we know that there exists d ̸= 0 such that the equality holds.
Let ε > 0 and let u = x̄ + εd, v = x̄ − εd. Clearly, we have x̄ = 0.5u + 0.5v. Moreover, we have u, v ∈ P

because at the tight constraints ai we have aid = 0 and for the remaining constraints we may choose ε small,
thus this yields us a contradiction. [2 ⇒ 1]:
Let I be the set of indices of tight constraints at x̄. Let c =

∑
i=I ai. Thus for all x ∈ P , we have

cT x =
∑
i∈I

aT
i x ≤

∑
i∈I

bi =
∑
i∈I

aT
i x̄ = cT x̄

Notice that for cT x = cT x̄, we must have aT
i x = bi for all i ∈ I, hence the solution is unique.

Theorem 4.5

Let P be a polyhedron with at least one extreme point, then if

max cT x s.t. x ∈ P

has an optimal solution, there exists an optimal solution which is an extreme point.
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Proof. Let x̄ be an optimal solution to

max cT x s.t. x ∈ P = {x : Ax ≤ b}

Let I be the index set of tight constraints at x̄. If rank(An) = n, then we are done. Otherwise, pick d ̸= 0
such that AId = 0. For some ε > 0, we know that x̄ ± εd ∈ P . Because we know that x̄ is the optimal
solution, we have

cT x + εxT d ≤ cT x ⇒ cT d ≤ 0

Similarly, because cT x− εxT d ≤ cT x, we get cT d ≥ 0, thus we have cT d = 0. This tells us that x̄± εd ∈ P

are also optimal solutions. Suppose ∀ ε > 0, x̄ ± εd ∈ P , then P does not have an extreme point (proof
will be later). This means that for the largest ε for which x̄ ± εd ∈ P , some constraints aT

i x ≤ bi, i /∈ I

will become tight, so aT
i d ̸= 0. Hence ai is linearly independent from AI .

Now the questions arises:

when does a polyhedron attain extreme point

Lecture 9 - Tuesday, October 08

Definition 4.15: Line

Let x, d ∈ Rn with d ̸= 0, the set
{x + λd : d ∈ R}

is called a line.

Definition 4.16:

We say a polyhedron P has a line if there exists x̄ ∈ P and d ̸= 0 ∈ P such that

{x̄ + λd : d ∈ R} ⊆ P

Proposition 4.1

P = {x ∈ Rn : Ax ≤ b} has a line if and only if P ̸= ∅ and there exists d ̸= 0 such that Ad = 0 if and
only if P ̸= ∅ and rank(A) < n.

Proof. It is easy to see that

there exists d ̸= 0 such that Ad = 0 if and only if P ̸= ∅ and rank(A) < 0

[2 ⇒ 1]
Since P is non-empty, we have x̄ ∈ P for some x̄, then we have

A(x̄ + λd) = Ax̄ + λAd = Ax̄ ≤ b ∀ λ ∈ R
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which implies that x̄ + λd ∈ P for all λ ∈ R.
[1 ⇒ 2]
Since P has a line, we know that there exists x̄ ∈ P , hence P ̸= ∅. Suppose aT

i d > 0, then there exists λ

such that
aT

i (x̄ + λd) > bi

which implies that P does not have the line, contradiction.

Theorem 4.6

A polyhedron P has an extreme point if and only if P ̸= ∅ and P has no lines.

Proof. Forward direction:
We prove this using contrapositive. If P = ∅, then P has no extreme point. If P is non-empty and P has a
line, then there exists d ∈ Rn, d ̸= 0 such that Ad = 0. For any x ∈ P , we have

x = 1
2(x + d) + 1

2(x− d)

where both 1/2(x + d) and 1/2(x− d) are feasible solutions.
Backward direction:
For any x ∈ P , let I(x) be the indices of constraints tight at x. Let x̄ ∈ P be a point with largest rank

(
AI(x̄)

)
.

If the rank is n, we are done. Otherwise, we find d with d ̸= 0 such that AI(x̄)d = 0, which implies that we
must have some i ∈ 1, . . . , m\I(x̄) such that

aT
i d ̸= 0

(else it would have a line). Therefore, we can find a point with more linear independent tight constraints
than x̄, which is a contradiction.

Definition 4.17: Pointed

A non-empty polyhedron that has no lines is called pointed.

5 Midterm

This is the midterm cuff-off line.
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6 Cones and Extreme Rays

6.1 Cone

Definition 6.1: Cone

A set C ⊆ Rn is a cone if ∀ x ∈ C, ∀ d ∈ R with d ≥ 0, λx ∈ C.

Example 6.1

A line C = {c(1, 1) : c ∈ R} ⊆ R2 is a cone.

Discovery 6.1

In our class, we do not need the requriement that for x1, x2 ∈ C, x1 + x2 ∈ C. We will instead call this
a convex cone.

Definition 6.2: Polyhedral Cone

A cone C is called a polyhedral cone if C can be written in the form of

C = {x ∈ Rn : Ax ≤ 0}

Definition 6.3: Recession Cone

Given a polyhedron P ̸= ∅, its recession cone is

rec(P ) = {r ∈ Rn : x̄ + λr ∈ P, ∀ x̄ ∈ P, ∀ λ ≥ 0}

Theorem 6.1

If P = {x ∈ Rn : Ax ≤ b} ≠ ∅, then

rec(P ) = {r ∈ Rn : Ar ≤ 0}

Proof. It is easy to see that
rec(P ) ⊇ {r : Ar ≤ 0}

Pick r /∈ {r : Ar ≤ 0}, so aT
i r > 0 for some i ∈ {1, . . . , m}. Then there exists λ > 0 such that

x̄ + λr /∈ P ⇒ r /∈ rec(P )

hence we must have rec(P ) ⊆ {r : Ar ≤ 0}.
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Example 6.2

x

y

0

P

rec(P )

6.2 Extreme Rays

Definition 6.4: Extreme Rays

Let C be a cone, r ∈ C is an extreme ray of C if r ̸= 0 and for any r1, r2 ∈ C such that r is the line
segment between r1 and r2, then r1 and r2 are non-negative multiplies of r.

Theorem 6.2

Let C = {x ∈ Rn : Ax ≤ 0} be pointed. Then r ∈ C is an extreme ray of C if and only if r ̸= 0 and
there are n− 1 linearly independent constraints tight at r.
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Proof. Let

α =
m∑

i=1
ai and A =


− aT

1 −
...

− aT
m −


Note that if r ̸= 0, r ∈ C. Then there exists i : aT

i r < 0 since otherwise we have Ar = 0 , which would imply
r = 0 because rank(A) = n. Therefore, αT r < 0. Take

P =
{

x ∈ Rn : Ax ≤ 0
αT x ≥ −1

}

Recall that

rec(P ) =
{

x ∈ Rn : Ax ≤ 0
αT x ≥ 0

}
But Ax ≤ 0 implies that αT x ≤ 0, and this tells us that if x ∈ rec(P ), then x satisfies αT x = 0. Hence
Ax = 0 implies that x = 0. Now let x̂ be an extreme point of P . If αT x̂ > −1, then the n linearly
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independent constraints tight at x̂ come from Ax ≤ 0 ⇒ x̂ = 0.
Otherwise, we have αT x̂ = −1, there are n− 1 linearly independent constraints from Ax ≤ 0 tight at x̂.
Now STP r is an extreme ray of C if and only if there exists β > 0 such that r = βx̂ for some extreme point
x̂ of P that satisfies αT x̂ = −1.
Remark: Note that for every r ̸= 0, r ∈ C, we have r

|αT r|
is a point in P satisfying αT

(
r

|αT r|

)
= −1.

(=⇒) Hence we pick β = |αT r|, and let x̂ = 1
β

r, so αT x̂ = −1. Now suppose x̂ = 0.5x1 + 0.5x2 for

x1, x2 ∈ P\{x}. Then
βx̂︸︷︷︸

r

= 0.5 βx1︸︷︷︸
r1

+0.5 βx2︸︷︷︸
r2

But since r was an extreme ray, r1 and r2 are multiples of r. Thus

r1 = γ1r, r2 = γ2r for γ1, γ2 > 0

But x1 and x2 must satisfy αT x1 = αT x2 = −1. Then

x1 = r1

|αT r1|
= γ1r

γ1|αT r|
= x̂

which is a contradiction.
(⇐=) analugous.

Definition 6.5: Ray

If P ̸= ∅ and r is a ray (extreme ray) of rec(P ), we say r is a ray (extreme ray) of P .

Proposition 6.1

Let P ̸= ∅ and P has a ray r, then P has extreme rays if and only if P has no lines.

Proof. Skipped. Here is a sketch:
If it has a line, then you can use the line to write any extreme ray in terms of vectors that are not positive
scalars of itself.
If it has no lines, then A has rank n and you can use n− 1 linearly independent constraints to “construct”
an extreme ray. (Note that we know by hypothesis that the recession cone is non-zero)

Proposition 6.2

Let ∅ ̸= P = {x ∈ Rn : Ax ≤ b} be pointed. Let r1, . . . , rℓ be its extreme rays. Then

maxcT x s.t. x ∈ P

is unbounded if and only if ∃ j : cT rj > 0.
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6.3 Minkowski-Weyl

Theorem 6.3: Minkowski-Weyl

Let P ̸= ∅ be a pointed polyhedron, then

P =

x ∈ Rn :
x =

∑k
i=1 λix

i +
∑ℓ

j=1 µjrj∑k
i=1 λi = 1

λ ≥ 0, µ ≥ 0


where x1, . . . , xk are extreme points, and r1, . . . , rℓ are extreme rays.

Proof. We denote the big {} as Q.
Forward direction:
Let x ∈ Q, we have

Ax =
k∑

i=1
λi Axi︸︷︷︸

≤b

+
ℓ∑

j=1
µjArj︸ ︷︷ ︸

≤0

≤
k∑

i=1
λib + 0 = b

which implies that x ∈ P , thus Q ⊆ P .
Backward direction: See below.

Corollary 6.1

The reverse of the above theorem is also true.

Result 6.1

As a result, any polyhedron has two descriptions:

1. Intersection of finitely many inequalities (out description);

2. Convex combination of points and non-negative combination of rays (inner description).

Lecture 11 - Tuesday, October 22

Proof. We finish the proof for Minkowski-Weyl Theorem. Assume there exists w ∈ P \ Q. Thus we know
that

min 0 s.t.

∑k
i=1 λix

i +
∑ℓ

j=1 µjrj = w (α)∑k
i=1 λi = 1 (α0)

λ ≥ 0, µ ≥ 0
(QLP)

is infeasible. Writing out the dual we have:

max wT α + α0 s.t. αT xi +α0 ≤ 0 ∀ i = 1, . . . , k

αT rj ≤ 0 ∀ j = 1, . . . , ℓ
(QD)
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which we know is unbounded. Hence there exist α and α0 such that

αT w + α0 > 0

Now consider
max ᾱT x s.t. x ∈ P (*)

which we know is feasible. Now we have two cases,

1. (∗) has an optimal solution
In this case, (∗) has an extreme point optimal solution. However,

αT w + α0 > 0 ≥ αT xi + α0 ⇒ αT w > αT xi ∀ i = 1, . . . , k

and there exists i such that αT xi ≥ αT w, which is a contradiction.

2. (∗) is unbounded
Then there exists r ∈ rec(P ) such that

αT r > 0

In fact, there exists extreme ray rj such that

αT rj > 0

But this contradicts the fact that α and α0 are feasible for (QD).

Hence we complete the proof.

Definition 6.6: Conv, Cone

Let x1, . . . , xk ∈ Rn, then we define

conv
({

x1, . . . , xk
})

:=

x :
x =

∑k
i=1 λix

i

1 =
∑k

i=1 λi

λ ≥ 0


We define

cone
({

r1, . . . , rk
})

:=
{

r : r =
∑k

i=1 µir
i

µ ≥ 0

}
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Example 6.3

x1 x2

x3

x4

x5

Shaded region: conv({x1, x2, x3, x5})

r1

r3

r2

origin

Shaded region: cone({r1, r2, r3})

6.3.1 Convex Hull

Discovery 6.2: Convex Hull

For all S ⊆ Rn, conv(S) is the smallest convex set containing S, and is called a convex hull . (This
is the same as the previous definition for |S| is finite). Moreover, cone(S) is the smallest convex cone
containing S, called the cone generated by x1, . . . , xk. (Again, in the case of |S| is finite, this
coincides with the previous definition as well).

Definition 6.7: Minkowski Sum

Let S, T ⊆ Rn, the Minkowski Sum of S and T is

S + T :=
{

x : x = a + b

a ∈ S b ∈ T

}

Note 6.1

If S = ∅ = T , then S + T = ∅.

Result 6.2

Minkowski-Weyl says that if P ̸= ∅ and pointed, then

P = conv(E) + cone(R)

where E is the set of extreme points, and R is the set of extreme rays.

36



Example 6.4

A
B

C

conv(E) + cone(R)

Corollary 6.2

Let x1, . . . , xk ∈ Rn and r1, . . . , rℓ ∈ Rn, let

P := conv(
{

x1, . . . , xk
}

) + cone(
{

r1, . . . , rℓ
}

)

Then P is a polyhedron, i.e., there exist A and b such that

P = {x : Ax ≤ b}

Proof. We have

P = projx

(x, λ, µ) :
x =

∑k
i=1 λix

i +
∑ℓ

j=1 µjrj

1 =
∑k

i=1 λi

λ ≥ 0, µ ≥ 0


as desired.

Lecture 12 - Thursday, October 24

Note 6.2

In class midterm today.

Lecture 13 - Tuesday, October 29
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7 Simplex Algorithm

Definition 7.1: Standard Equality Form

An LP is said to be in standard equality form (SEF) if it is of the form

max cT x

s.t. Ax = b

x ≥ 0

Proposition 7.1

Given any LP, there is an equivalent LP in SEF.

Proof. Here we only give the idea of the proof.

• If LP is minimization of cT x, it is equivalent to solving for max − cT x and multiply the result by −1.

• Suppose we have aT
i x ≤ bi as a contraint, we simply add a variable si ≥ 0 and write aT

i x + si = bi.

• Suppose we have aT
i x ≥ bi as a contraint, we simply add a variable si ≥ 0 and write aT

i x − si = bi.

Note 7.1

The first si is called the slack variable, while the second si is called a surplus variable.

• If we have xj ≤ 0, we let x′
j = −xj and replace xj in the original LP by −x′

j .

• If xk is free, we introduce x+
k and x−

k such that x+
k , x−

k ≥ 0 and let xk = x+
k − x−

k .

Example 7.1: Free variable example

Suppose we have LP:

max
(

1 2 3
)

x

s.t.
(

1 5 3
2 −1 2

)
x =

(
5
4

)
x1, x2 ≥ 0, x3 free

Solution: We set x3 := a− b where a, b ≥ 0, and so the objective function has become(
1 2 3 −3

)(
x1 x2 a b

)T

whereas the constraints has become(
1 5 3 −3
2 −1 2 −2

)(
x1 x2 a b

)T

=
(

5
4

)
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as desired. 2

Assume without loss of generality that rank(A) = m, because otherwise, the LP is either infeasible
or there are redundant constraints.

Note 7.2

Note that the polyhedra in SEF have no lines, so if they are non-empty, they have basic feasible solution,
which satisfies n linearly independent constraints out of Ax = b, x ≥ 0 at equalities. We know that m

of them come from Ax = b (assuming m ≤ n), hence n−m of them come from x ≥ 0.

Hence for a basic feasible solution, we will have xj = 0 for j ∈ N ⊆ {1, . . . , n} with |N | = n−m and Ax = b.

Definition 7.2:

For a matrix M with n columns, and J ⊆ {1, . . . , n}. Matrix MJ is the matrix obtained by picking
columns in J .

Example 7.2

For M =
(

1 1 0 1
2 1 1 3

)
and J = {1, 3}, we have MJ =

(
1 0
2 1

)
.

As a result, if we let B = {1, . . . , n}\N , then

Ax = b ⇐⇒ ABxB + AN xN = b

If xN = 0, then we have RHS as ABxB = b.

Definition 7.3: Basis

B ⊆ {1, . . . , n} is a basis if AB is a full rank matrix.

Definition 7.4: Basic Variable

Given a basis B, xB are basic variables, and xN are nonbasic variables.

Given a basis B, associated basic solution is

xN = 0 and xB = A−1
B b

If xB = A−1
B b ≥ 0, then it is a basic feasible solution. In this case, we say B is a feasible basis.
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7.1 Canonical Form

Algorithm 7.1

Start with a feasible basis B, while there exists a better basis B′.
Suppose I have a starting feasible basis B, rewrite

max cT x

s.t. Ax = b

x ≥ 0

max cT
BxB + cT

N xN

⇐⇒ s.t. ABxB + AN xN = b

xB , xN ≥ 0

max cT
BxB + cT

N xN + 0

⇐⇒ s.t. A−1
B ABxB + A−1

B AN xN = A−1
B b

xB , xN ≥ 0
Note that

xB + A−1
B AN xN −A−1

B b = 0 ∈ Rm

⇒ −cT
B

[
xB + A−1

B AN xN −A−1
B b
]

= 0 ∈ R

Hence we may rewrite the objective function as

max cT
BxB + cT

N xN − cT
B

[
xB + A−1

B AN xN −A−1
B b
]

⇒ max cT
N xN − cT

BA−1
B AN xN + cT

BA−1
B b

Now the LP becomes

max
(
cT

N − cT
BA−1

B AN

)
xN + cT

BA−1
B b

s.t. xB + A−1
B AN xN = A−1

B b

xB , xN ≥ 0

which is called the canonical form for basis B.

Discovery 7.1

Let
cN

T := cT
N − cT

BA−1
B AN

If cN ≤ 0, then basis B is optimal, else there exists j ∈ N such that cj > 0.

Example 7.3

Suppose we have
max

(
0 1 0 −1

)
x + 240

and B = {1, 3}, N = {2, 4}. Then we have

cN =
(

1
−1

)
and c4 = −1, c2 = 1
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7.2 Result of Equivalent LP’s

We have shown that the following four LP’s are equivalent:

max cT x

s.t. Ax = b

x ≥ 0
(1)

max cT
BxB + cT

N xN

s.t. ABxB + AN xN = b

xB , xN ≥ 0
(2)

max
(
cT − cT

BA−1
B A

)
x + cT

BA−1
B b

s.t. A−1
B Ax = A−1

B b

x ≥ 0
(3)

max cT
N xN + cT

BA−1
B b

s.t. xB + A−1
B AN xN = b

xB , xN ≥ 0
(4)

7.2.1 Example of Simplex (details missing)

Example 7.4

Suppose we have the LP as

max
(

2 1 1 0 0
)

x

s.t.

(
1 2 −1 1 0
2 −2 −1 0 1

)
x =

(
2
3

)
x ≥ 0

(1)

Let B = {1, 4}, then the LP becomes

max
(

2 0
)(x1

x4

)
+
(

1 1 0
)x2

x3

x5



s.t.

(
1 1
2 0

)(
x1

x4

)
+
(

2 −1 0
−2 −1 1

)x2

x3

x5

 =
(

2
3

)
(

x1

x4

)
≥ 0,

x2

x3

x5

 ≥ 0

(2)

and

max
(

0 3 2 0 −1
)

x

s.t.

(
1 −1 −0.5 0 0.5
0 3 −0.5 1 −0.5

)
x =

(
1.5
0.5

)
x ≥ 0

(3)
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and

max
(

3 2 −1
)x2

x3

x5

+ 3

s.t.

(
x1

x4

)
+
(
−1 −0.5 0.5
3 −0.5 −0.5

)x2

x3

x5

 =
(

1.5
0.5

)
(

x1

x4

)
≥ 0,

x2

x3

x5

 ≥ 0

(4)

Note 7.3

If cT =
(
cT − cT

BA−1
B A

)
, is vector of reduced costs.

Lecture 14 - Thursday, October 31

Result 7.1

If c ≤ 0, then B is an optimal basis, corresponding BFS is an optimal solution. Else there exists j such
that ←−c j > 0.

Example 7.5

Continue the above example. In (3), suppose we want to increase x2 from 0 to ε ≥ 0 (we keep equality
so that ε could take 0), while keeping x3 = x5 = 0. Thus we have(

x1

x4

)
+
(
−1
3

)
ε =

(
1.5
0.5

)
⇐⇒ x1 = 1.5 + ε ≥ 0

x4 = 0.5− 3ε ≥ 0
⇒ ε ∈

[
−3

2 ,
1
6

]

Take ε = 1/6, we have x1, x2 ̸= 0 and x3 = x4 = x5 = 0, which implies that we arrive at a new basis
B = {1, 2} and N = {3, 4, 5}.
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7.3 Simplex Algorithm (basic idea)

Algorithm 7.2

1. Start with a feasible basis B;

2. Write LP in canonical form for B;

3. If c ≤ 0, we halt and conclude that B is optimal basis. Otherwise, we procees to next step;

4. Pick j ∈ N such that cj > 0 entering the basis. Figure out which variable leaves the basis;

5. The new basis B′ becomes (B\{k}) ∪ {j} and go to step 2.

7.3.1 Variable Leaving Basis

• Call A = A−1
B A and b = A−1

B b.

• For every i = 1, . . . , m, let B(i) be the corresponding basic variable.

• Increasing xj to ε will mean that xB(i) will

– increase by |aij |ε if aij < 0, or
– decrease by |aij |ε if aij > 0

• Compute mini:aij>0
bi

aij

Note 7.4

Currently xB(i) = bi, when we increase xj to ε, we have

xB(i) = bi − aijε ≥ 0 ⇒ ε ≤ bi

aij
for aij > 0

• Let ℓ be such that bℓ

aℓj
= mini:aij>0

bi

aij
, we then have k = B(l).

7.3.2 Questions arising (Bland’s Rule)

Note 7.5

Does this converge? In other words, do we halt after a finite number of steps.
If at current BFS we have a basic variable = 0, we may have ε = 0 → May lead to cycling. (i.e. return
to current basis in future iteration)

Proof. If problem has optimal solution AND ε is always > 0, simplex finishes as we always get stricktly
better solution and ther eare only finitely many bases.
Here we introduce Bland’s Rule: if there are multiple choices of entering or leaving variables, always pick
lowest index variable.
Using Bland’s Rule avoids cycling.
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Note 7.6

What if aij ≤ 0 for all i = 1, . . . , m?

Proof. Then the LP is unbounded.

Discovery 7.2

Here is a quick discovery: For the LP:

max cT
BxB + cT

N xN

s.t. ABxB + AN xN = b

xB , xN ≥ 0

we consider its dual:

min bT y

s.t. yT AB ≥ cT
B

yT AN ≥ cT
N

For x is a basic feasible solution, we know that xN = 0 and xB = A−1
B b. To guarantee that, we need

to satisfy Complementary Slackness, namely we need to have

yT AB = cT
B ⇒ yT = cT

BA−1
B

The dual feasibility further yields us

yT AN ≥ cT
N ⇐⇒ cT

BA−1
B AN ≥ cT

N ⇐⇒ cT
N − cT

BA−1
B AN ≤ 0

which is exactly the point we reach an optimal solution in the algorithm.

Lecture 15 - Tuesday, November 05

7.4 Geometric of the Simplex Algorithm

Here we use to denote a variable entering the basis, and ⃝ to denote a variable leaving the basis.
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Consider the following LP:

max x1 + x2

s.t. x1 − x2 ≤ 2 (1)
x1 ≤ 2 (2)

1.5x1 + x2 ≤ 3.5 (3)
0.25x1 + x2 ≤ 1 (4)

x1, x2 ≥ 0

(1)

(2)

(3)

(4)
C

(1) (2) (3)

(4)
x1

x2

Rewriting in SEF. In canonical form for B = {3, 4, 5, 6}

max ( 1 , 1, 0, 0, 0, 0)x

s.t.


1 −1 1 0 0 0
1 0 0 1 0 0

1.5 1 0 0 1 0
0.25 1 0 0 0 1

x =


2
2

3.5
1


x ≥ 0

Now the basis become Basis : {1, 4, 5, 6}, and

max (0, 2 ,−1, 0, 0, 0)x + 2

s.t.


1 −1 1 0 0 0
0 1 −1 1 0 0
0 2.5 −1.5 0 1 0
0 1.25 −0.25 0 0 1

x =


2
0

0.5
0.5


x ≥ 0

Now the basis become Basis : {1, 2, 5, 6}, and

max (0, 0, 1 ,−2, 0, 0)x + 2

s.t.


1 0 0 1 0 0
0 1 −1 1 0 0
0 0 1 −2.5 1 0
0 0 1 −1.25 0 1

x =


2
0

0.5
0.5


x ≥ 0

Now the basis become Basis : {1, 2, 3, 6}, and

max (0, 0, 0, 0.5 ,−1, 0)x + 2.5

s.t.


1 0 0 1 0 0
0 1 0 −1.5 1 0
0 0 1 −2.5 1 0
0 0 0 1.25 −1 1

x =


2

0.5
0.5
0


x ≥ 0
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Lastly, the basis become Basis : {1, 2, 3, 4}, and

max (0, 0, 0, 0,−0.6,−0.4)x + 2.5

s.t.


1 0 0 0 0.8 −0.8
0 1 0 0 −0.2 1.2
0 0 1 0 −1 2
0 0 0 1 −0.8 0.8

x =


2

0.5
0.5
0


x ≥ 0

which implies that our optimal solution is x̄ =



2
0.5
0.5
0
0
0


and the optimal value is 2.5.

7.5 Mechanics

max (2, 1, 1, 0, 0)x

s.t.

(
1 2 −1 1 0
2 −2 −1 0 1

)
x =

(
2
3

)
x ≥ 0

Our current basis is B = {4, 5}. Notice that the smallest index j such that cj > 0 is j = 1, thus we have x1

entering the basis. Moreover, calculating 2/1 and 3/2 (bi/aki for all k) we find 3/2 < 1/1, thus we have x5

leaving the basis. Now the new basis becomes B = {1, 4}. We wish to make the boxed element to be 1 and
all other elements in the same column to be 0. By multiplying the boxed row by 1/2 and subtract it from
first row as well as the objective function, we obtain

max (2, 1, 1, 0, 0)x + (−1)

=0︷ ︸︸ ︷[
(2,−2,−1, 0, 1)x− 3

]

s.t.

(
0 3 −0.5 1 −0.5
1 −1 −0.5 0 0.5

)
x =

(
0.5
1.5

)
x ≥ 0

=⇒ max (0, 3, 2, 0,−1)x + 3

s.t.

(
1 −1 −0.5 0 0.5
0 3 −0.5 1 −0.5

)
x =

(
1.5
0.5

)
x ≥ 0

For our second iteration, we have x2 leaving the basis, and x4 entering the basis. Thus the new basis becomes
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B = {1, 2}. We obtain:

max (0, 0, 2.5,−1,−0.5)x + 3.5

s.t.

(
1 0 −2/3 1/3 1/3
0 1 −1/6 1/3 −1/6

)
x =

(
5/3
1/6

)
x ≥ 0

Discovery 7.3

In Simplex Algorithm, we move from a BFS along a direction d defined as(
dB

dN

)
=
(
−Aj

ej

)

where j ∈ N enters the basis.

Note 7.7

In the example above, for B = {4, 5},


d4

d5

d1

d2

d3

 =


−1
−2
1
0
0

. Moving from x to x + θd.

Also note that
Ad = ABdB + AN dN = AB(−A−1

B Aj) + Aj = 0

which is essential since we are moving in a direction that only untights one of the constraints. Now if Aj ≤ 0,
then d ≥ 0. And

cT d = cB
T dB︸ ︷︷ ︸
=0

+cN dN = cj > 0

which implies that the LP is bounded.
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7.6 Dealing with Feasibility — 2-phase Simplex Method

We wish to solve
max cT x

s.t. Ax = b

x ≥ 0
(SEF)

Our goal is to find a feasible basis B, or to show that none exists.
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7.6.1 Phase 1

Algorithm 7.3

• Assume WLOG that b ≥ 0;

• Consider
max −eT z

s.t. Ax + Iz = b

x, z ≥ 0
(AUX)

Notice that the objective function is equivalent to min
∑

i zi. Here we have several results:

– (AUX) has a BFS, and z is the basic variable, x is the non-basic variable;

– (AUX) has an optimal solution, since it is bounded below by zero in regards to the equivalent
form.

– If the optimal value for (AUX) is 0, then zi = 0 for all i. This case yields us a feasible basis
B for (SEF) with only x variables in it.

– If the optimal value for (AUX) < 0, then (SEF) is infeasible.

7.6.2 Phase 2

Algorithm 7.4

If Phase 1 ended with a feasible basis B for (SEF), we run simplex on (SEF) with B as our starting
basis.

7.7 Brief Complexity of Algorithms (Handwavy)

Definition 7.5: Size

Given a problem instance I, the size(I) is the number of bits needed to represent it.

Example 7.6

For LPs:

≈ (m× n + n + m)
[

max bit size
of A, b, c

]
if A, b, and c are integers.

Definition 7.6: Efficient

We say an algorithm is efficient if it runs in O(poly(size(I))) for all instances I. i.e., a polynomial
time algorithm.
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Result 7.2

Simplex method is NOT a polynomial time algorithm.

Theorem 7.1: Spielman & Tang (2001)

“Bad” instances are pathological, (“happens rarely”).

7.7.1 Hirsch Conjecture

Suppose we have a polytope (a bounded polyhedron):

P = {x ∈ Rn : Ax ≤ b}

where A is m×n. Let u, v ∈ P and define dist(u, v) to be the shortest path from u to v going through edges
of P .

Definition 7.7: Edge

Line segment between adjacent vertices.

Example 7.7

u

v

dist(u, v) = 2

Definition 7.8: Diameter

We define the diameter of P , diam(P ), to be

diam(P ) = maxu,v vertices ∈P {dist(u, v)}

Discovery 7.4

Then the number of simples iterations is greater or equal to diam(P ) (worst case).

The Hirsch conjecture states that

diam(P ) ≤ m− n
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Theorem 7.2: Santos (2010)

The Hirsch conjecture is false.

7.7.2 Polynomial Hirsch Conjecture

The conjecture states that
diam(P ) ≤ poly(n, m)

Discovery 7.5

Notice that even if this is true, the Simplex method still has issues:

→ degenerate iterations;

→ choices of entering/ leaving variables determines the edge, but we do not know the rule that
allows us to guarantee ≤ diam(P ) iterations.

7.8 Polynomial Equivalence of Separation, Optimization, Feasibility

Definition 7.9: Separation Problem

Given a bounded polyhedron
P = {x ∈ Rn : Ax ≤ b}

and x̄ ∈ Rn. The separation problem is to determine if x̄ ∈ P or find α, α0 such that

αT x ≤ α0 ∀ x ∈ P and αT x̄ > α0

Definition 7.10: Feasibility Problem

Given a bounded polyhedron
P = {x ∈ Rn : Ax ≤ b}

Determine if P = ∅ or find x̄ ∈ P .

Definition 7.11: Optimization Problem

Given a bounded polyhedron
P = {x ∈ Rn : Ax ≤ b}

c ∈ Rn, find if P = ∅ or find x̄ ∈ P such that

cT x̄ ≥ cT x ∀ x ∈ P
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7.8.1 Grötchel-Lovász-Schrijver

Theorem 7.3: Grötchel-Lovász-Schrijver

We have TFAE:

1. Separation problem can be solved in polynomial time

2. Feasibility problem can be solved in polynomial time

3. Optimization problem can be solved in polynomial time

Proof. Opt ⇒ Feas: this is simple.
Feas ⇒ Opt: the idea is binary search. We ask the question: Is there x ∈ P such that cT x ≥ γ, and we do
binary search on γ.
Opt ⇒ Sep: Idea in HW2Q4
Sep ⇒ Feas: GLS uses Ellipsoid Algorithm that uses separation to solve for feasibility.

Note 7.8

Ellipsoid-Karmarkar — first polynomial time algorithm for LP.

Result 7.3

Overall, there is no known strongly polytime algorithm for LPs (2024 Nov). i.e., poly(n, m).
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8 Integer Programming (IP)

Now we would encounter problems like

max cT x

s.t. Ax ≤ b

xj ∈ Z, ∀ j ∈ I

(IP)

where c ∈ Qn, A ∈ Qm×n, b ∈ Qm and I ⊆ {1, . . . , n} with I ̸= ∅.

Definition 8.1: Pure IP

If I = {1, . . . , n}, then the IP is called a pure IP.

Definition 8.2: Mixed IP

If I ̸= {1, . . . , n}, then the IP is called a mixed IP.

Definition 8.3: Binary IP

If all variables are required to be in {0, 1}, then the IP is called a binary IP.

Definition 8.4: Integral

We say x̄ ∈ Rn is integral if x̄j ∈ Z for all j ∈ I.

Definition 8.5: Rational Polyhedron

P = {x ∈ Rn : Ax ≤ b} is a rational polyhedron if A, b ∈ Q as above.

Note 8.1

We denote
PI = {x ∈ P : x is integral}
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8.1 If P is a rational polyhedron, then conv(PI) is a rational polyhedron. If
PI ̸= ∅, then rec(conv(PI)) = rec(P )

Theorem 8.1

If P is a rational polyhedron, then conv(PI) is a rational polyhedron. If PI ̸= ∅, then

rec(conv(PI)) = rec(P )

Proof. Assume P ̸= ∅ and pointed, also assume I = {1, . . . , n} to simplify proof.
If PI = ∅, then we may take

conv(PI) = {x ∈ Rn : 1 ≤ x1 ≤ −1}

which simply constructs an empty polyhedron arbitrarily. Therefore we may assume that PI ̸= ∅, thus by
Minkowski-Weyl (6.3), we have

P =

x ∈ Rn :
x =

∑p
i=1 λix

i +
∑q

j=1 µjrj∑p
i=1 λi = 1

λ ≥ 0, µ ≥ 0

 ,
x1, . . . , xp extreme points
r1, . . . , rq extreme rays

Note 8.2

Extreme points are rational. We may assume that extreme rays are rational too. Rather, we may even
assume that extreme rays are integral, since we can always scale them.

Now we define a bounded polyhedron:

T =

x ∈ Rn :
x =

∑p
i=1 λix

i +
∑q

j=1 µjrj∑p
i=1 λi = 1

λ ≥ 0, 0 ≤ µj ≤ 1, ∀ j = 1, . . . , q


Thus we have

TI = {x ∈ T : x ∈ Zn} and RI =

x =
q∑

j=1
µjrj , µj ∈ Zq

≥0


Claim 1: PI = TI + RI i.e., PI = TI ⊔RI

[⊇]: Trivial.
[⊆]: we have

x ∈ PI ⇒ x =
∑

λix
i +
∑

µjrj , since PI ⊆ P

⇒
∑

λix
i +
∑

(µj − ⌊µj⌋) rj︸ ︷︷ ︸
∈T

+
∑
⌊µj⌋rj︸ ︷︷ ︸
∈RI

⇒ PI ∋ x = t + r ∈ T + RI

⇒ t = x− r ∈ Zn

⇒ t ∈ TI
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as desired.
Claim 2: conv(TI + RI︸ ︷︷ ︸

PI

) = conv(TI) + conv(RI).

Claim 3: conv(RI) = rec(P ).
The proof for claim 2 and 3 are skipped, they are not trivial.

8.2 max cT x s.t. x ∈ PI ≡ max cT x s.t. x ∈ conv(PI)

Theorem 8.2

We have {
max cT x

s.t. x ∈ PI

}
︸ ︷︷ ︸

z1

=
{

max cT x

s.t. x ∈ conv(PI)

}
︸ ︷︷ ︸

z2

Proof. Since PI ⊆ conv(PI), we have z1 ≤ z2.
Note that if PI = ∅, then conv(PI) = ∅, which implies that z1 = z1 = −∞. Thus we may assume that
PI ̸= ∅. Let x∗ ∈ conv(PI), this tells us that

x∗ =
p∑

i=1
λix

i,
∑

i

λi = 1, λ ≥ 0, x1, . . . , xp ∈ PI

This implies that there exists i such that
cT xi ≥ cT x∗

because otherwise we would have

cT x∗ =
∑

λic
T xi <

∑
λic

T x∗ = cT x∗

Therefore, we must have z1 = z2 as desired.

Corollary 8.1

Suppose P is pointed, then conv(PI) is pointed, and any extreme point of conv(PI) is integral.

Proof. (Pure integer case for simplicity)
We have

rec(P ) ⊇ rec(conv(PI))

which implies that conv(PI) is pointed. Let x∗ be an extreme point of conv(PI), so there exists c such that
x∗ is a unique solution to

max cT x

s.t. x ∈ conv(PI)

However, the theorem tells us that there exists x̄ ∈ PI such that cT x̄ = cT x∗. But x̄ ∈ conv(PI) implies that
x∗ = x̄ ∈ PI , which further implies that x∗ is integral.
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Example 8.1

Suppose we have P = {x ∈ R2 : x2 ≥
√

2x1}, thus PI = P ∩ Z2:

x1

x2
x2 =

√
2x1

Note 8.3

Notice that conv(PI) is not a polyhedron since it is not a closed set, so our theorem wouldn’t
apply in this case.

Lecture 18 - Thursday, November 14

Consequences:
max cT x

s.t. Ax ≤ b
(LP)

max cT x

s.t. Ax ≤ b

xj ∈ Z, ∀ j ∈ I

(IP)

Then (IP) is either infeasible/ unbounded/ or has an optimal solution.

Result 8.1

• If (LP) is infeasible, then (IP) is infeasible.

• If (LP) is unbounded,

– If PI ̸= ∅, then (IP) is unbounded;

– If PI = ∅, then (IP) is infeasible.

• If (LP) has an optimal solution,

– If PI ̸= ∅, then (IP) has an optimal solution;

– If PI = ∅, then (IP) is infeasible.

55



Note 8.4

Separation, Optimization, and Feasibility for conv(PI) are all “polynomially equivalent”.

Note 8.5

Input size of (IP) is approximately the input size of (LP).

8.3 Cutting Plane Algorithm

It is hard to compute conv(PI), so we try to produce sequence of polyhedra that are “closer” to conv(PI).

Definition 8.6:

We call (LP) the LP-relaxation of (IP).

Definition 8.7: Valid

We say an inequality αT x ≤ α0 is valid for S ⊆ Rn if αT x̄ ≤ α0 for all x̄ ∈ S.

Example 8.2

Geometric interpretation:

x∗

x∗
new

P

PI

valid inequality for PI

It is reasonable to assume that (LP) has an optimal solution.

Algorithm 8.1

Let R← P = {x : Ax ≤ b}.
Do, while R neq ∅

| Let x∗ be opt. sol. to
| max cT x

| s.t. x ∈ R

| If x∗ is integral , stop.
| x∗ is opt. sol. for (IP)
| Else , find αT x ≤ α0 valid for PI such that αT x∗ > α0 ,
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| R← R ∩ {x : αT x ≤ α0}

Return PI = ∅.

Note 8.6

At all times,
PI ⊆ R ⊆ P

and we have
max cT x

s.t. x ∈ PI︸ ︷︷ ︸
zI

≤ max cT x

s.t. x ∈ R︸ ︷︷ ︸
zR

If x∗ is integral, then
x∗ ∈ PI ⇒ zR = cT x∗ ≤ zI ≤ zR

which implies that x∗ is optimal solutions for PI .

Proposition 8.1

Let R be a pointed polyhedron such that PI ⊆ R ⊆ P . Let x∗ be a BFS of

max cT x

s.t. x ∈ R

Then x∗ is integral if and only if x∗ ∈ conv(PI).

Proof. exercise.

This suggests that cutting plane algorithm is well-defined if x∗ is a BFS.

8.4 Chvátal-Gomory (CG) Cuts

• Assume I = {1, . . . , n} (this is crucial);

• Assume P = {x : Ax = b, x ≥ 0} (for convenience).

Now, x∗ is a BFS, i.e.
x∗

N = 0 and x∗
B = A−1

B b︸ ︷︷ ︸
b

and in canonical form for B:
xB + A−1

B AN︸ ︷︷ ︸
AN

xN = A−1
B b := b

xB , xN ≥ 0. Since x∗ is not integral, there exists i such that bi /∈ Z. Consider{
x ∈ Rn : xB(i) +

∑
j∈N āijxj = bi

xB(i) ≥ 0, xN ≥ 0

}
=: K
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Note 8.7

If αT x ≤ α0 is valid for K ∩ Zn, then it is valid for P ∩ Zn = PI , since

P ∩ Zn ⊆ K ∩ Zn

Note 8.8

If αT x ≤ α0 is valid for K ∩ Zn, then αj = 0 for all j ∈ B\{B(i)}.

Now we have
xB(i) +

∑
j∈N

⌊āij⌋xj ≤ bi

is valid for K, since xN ≥ 0. We know that xB(i) is an integer because we care about K ∩ Zn, and ⌊āij⌋, xj

are all integers. Therefore we have

xB(i) +
∑
j∈N

⌊āij⌋xj ≤ ⌊bi⌋ (*)

is valid for K ∩ Zn, hence is valid for PI .

Note 8.9

For x = x∗,
x∗

B(i) = bi and x∗
N = 0

which implies
x∗

B(i) +
∑
j∈N

⌊āij⌋x∗
j = x∗

B(i) = bi > ⌊bi⌋

i.e., we found αT x ≤ α0 valid for PI and with αT x∗ > α0.

Discovery 8.1

Geometrically, we have

bi

⌊bi⌋

not necessarily touching

bi − ⌊bi⌋
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Result 8.2

(*) is called a CG-cut.

Note 8.10

A cut is just a valid inequality violated by x∗.

Theorem 8.3

CG-cutting plane algorithm terminates after finitely many iterations.

Lecture 19 - Tuesday, November 19

8.5 Branch and Bound

8.5.1 Branch

Consider the IP:
zIP = max cT x

s.t. Ax ≤ b

xj ∈ Z, ∀ j ∈ I

(IP)

Note 8.11

We assume that I = {1, . . . , n}. Also assume IP relaxation has an optimal solution.

Discovery 8.2

Consider a ∈ Z, j ∈ I and two integer programs:

z1 = max cT x

s.t. Ax ≤ b

xj ≤ a

x ∈ Zn

(IP1)

z2 = max cT x

s.t. Ax ≤ b

xj ≥ a + 1
x ∈ Zn

(IP2)

Notice that if x∗ is the optimal solution for (IP), then it is either feasible for (IP1) or (IP2). Then

zIP = max{z1, z2}

We will represent this by a B&B tree:
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Example 8.3

(IP)

(IP1) (IP2)

xj ≤ a xj ≥ a + 1

Althought the number of problems grow exponentially, but the problems are simplified as we branch.

Definition 8.8: Branching

This is what’s called branching.

8.5.2 Bounding

The idea here is:

Look at a node of the B&B tree.
Let

max cT x

s.t. x ∈ R

be the LP relaxation of the corresponding IP.

Discovery 8.3: Fathom/ Prune by Infeasibility

If R = ∅, then the corresponding IP is also infeasible, thus we may stop branching from that node.
We call this “Fathom/ Prune by Infeasibility”.

Discovery 8.4: Fathom/ Prune by Optimality

If x∗ is an optimal solution for LP relaxation

max cT x

s.t. x ∈ R

of a node in the B&B tree and is integral, then x∗ is optimal for the IP corresponding to that node,
we stop branching in this case as well.
We call this “Fathom/ Prune by Optimality”.

Note 8.12

At any point of the time, we keep track of the best integral solution and value found at that time. At
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the start, we set

zbest ←− −∞

xbest ←− undefined

When pruning by optimality, if cT x∗ > zbest, we set

zbest ←− cT x∗

xbest ←− x∗

Discovery 8.5: Fathom/ Prune by Bound

If x∗ is optimal solution to LP relaxation of a note in the B&B tree and

cT x∗ ≤ zbest

so one cannot find a better integral solution than xbest. We stop branching in this case.
We call this process “Fathom/ Prune by Bound”.

Result 8.3

If all else fail, we look at x∗, pick j such that x∗
j /∈ Z. Set a := ⌊x∗

j⌋ and branch by adding xj ≤ a,
xj ≥ a + 1 in the “child” nodes.

Example 8.4

This is an example as the Branch and Bound could potentially be a bad algorithm. Consider the IP

min x1 + x2

s.t. x1 + x2 ≥ 0.5
x1 ≥ 0
x ∈ Z2

Consider the LP-relaxation, we found the optimal solution x∗ = (0, 0.5)T and the optimal value is 0.5.
Apply the algorithm with x∗, we would have

(0, 0.5)

(0.5, 0)
x2 ≤ 0 x2 ≥ 1

(1, -0.5)
x1 ≥ 1x1 ≤ 0

Notice that if we choose the “bad” nodes, this might never terminate.
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Lecture 20 - Thursday, November 21

9 Nonlinear Programming (NLP)

Definition 9.1: Convex Functions

Let S ⊆ Rm be a convex set, the function f : S → R is a convex function if for all x, y ∈ S and any
λ ∈ [0, 1],

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Example 9.1

x

f(x)

x y

f(x)

f(y)

λf(x) + (1− λ)f(y)

f(λx + (1− λ)y)

f(x) is a convex function.

Definition 9.2: Strictly Convex

The function f : S → R is strictly convex if

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y)

for all x, y ∈ S and any λ ∈ (0, 1).

Result 9.1

Let f0, f1, . . . , fm : Rm → R, NLP that we will focus on are

inf f0(x)
s.t. fi(x) ≤ 0 ∀ i = 1, . . . , m

(NLP)
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Note 9.1

This is a inf problem.

Definition 9.3: Convex Program

If f0, f1, . . . , fm are convex functions, then (NLP) is called a convex program.

Proposition 9.1

If f : Rn → R is a convex function, then the set

{x ∈ Rn : f(x) ≤ α} =: S

is a convex set, where α ∈ R is a real number.

Proof. Pick x, y ∈ S, for any λ ∈ [0, 1], we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
≤ λα + (1− λ)α
= α

which implies that λx + (1− λ)y ∈ S as desired.

9.1 Gradient and Hessian

Definition 9.4: Gradient & Hessian

Let f : Rn → R be twice differentiable, then

∇f(x̄) =


∂f

∂x1
(x̄)

...
∂f

∂xn
(x̄)

 and ∇2f(x̄) =
[

∂2f

∂xi∂xj
(x̄)
]

where ∇ is known as gradient and ∇2 is known as Hessian.

Theorem 9.1

Let S ⊆ R be a convex set, let f : S → R be twice differentiable, TFAE:

1. f is convex on S;

2. f(x) ≥ f(x̄) + f ′(x̄)(x− x̄) for all x, x̄ ∈ S;

3. (f ′(x)− f ′(x̄))(x− x̄) ≥ 0 for all x, x̄ ∈ S;
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4. f ′′(x) ≥ 0 for all x ∈ S.

Proof. [(1) ⇒ (2)]: Suppose x > x̄, then

lim
λ→0

f(x̄ + λ(x− x̄))− f(x̄)
λ(x− x̄) = f ′(x̄)

Since we know that
f(λx + (1− λ)x̄) ≤ λf(x) + (1− λ)f(x̄)

so for λ ∈ (0, 1),

f(λx + (1− λ)x̄)
λ(x− x̄) ≤ λf(x) + (1− λ)f(x̄)

λ(x− x̄)
f(λx + (1− λ)x̄)− f(x̄)

λ(x− x̄) ≤ λf(x) + (1− λ)f(x̄)− f(x̄)
λ(x− x̄) = f(x)− f(x̄)

x− x̄

We can now observe that
f ′(x̄) ≤ f(x)− f(x̄)

x− x̄

[(2) ⇒ (1)]: Let x, x̄ ∈ S and λ ∈ [0, 1], let y = λx + (1− λ)x̄, so we have

(1− λ)× f(x) ≥ f(y) + f ′(y)(x− y)
λ× f(x̄) ≥ f(y) + f ′(y)(x̄− y)

Sum them up we obtain

(1− λ)f(x) + λf(x̄) ≥ (1− λ)f(y) + λf(y)+
(1− λ)f ′(y)(x− y) + λf ′(y)(x̄− y)

= f(y) + f ′(y) [(1− λ)(x− y) + λ(x̄− y)]︸ ︷︷ ︸
=0

The rest of the proofs are left as exercise.

The following proofs are my attempted proofs:

[(2) ⇒ (3)]: By [2], we know that

f(x) ≥ f(x̄) + f ′(x̄)(x− x̄) and f(x̄) ≥ f(x) + f ′(x)(x̄− x)

Summing them up we have

f(x) + f(x̄) ≥ f(x̄) + f ′(x̄)(x− x̄) + f(x) + f ′(x)(x̄− x)

which further yields us
0 ≥ (f ′(x̄)− f ′(x))(x− x̄)
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[(3) ⇒ (2)]: WLOG assume x̄ < x. By MVT, we know that there exists c ∈ (x, x̄) such that

f ′(c) = f(x)− f(x̄)
x− x̄

Moreover, by [3] we know that

[f ′(x)− f ′(c)] (x− c) ≥ 0 and [f ′(c)− f ′(x̄)] (c− x̄) ≥ 0

which implies that f ′(x̄) ≤ f ′(c) ≤ f ′(c). Thus we have

f(x) = f(x̄) + f ′(c)(x− x̄) ≥ f(x̄) + f ′(x̄)(x− x̄)

Discovery 9.1

In general, we know that if f is convex on S, then

• For all x, x̄ ∈ S,
f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄)

• For all x, x̄ ∈ S,
(∇f(x)−∇f(x̄))T (x− x̄) ≥ 0

• For all x ∈ S,
∇2f(x) is P.S.D. (positive semi-definite)

Note 9.2

A symmetric n×n matrix Q is positive semi-definite (PSD) if for all y ∈ Rn, yT Qy ≥ 0. We denote

Q ⪰ 0

It is positive definite (PD) if for all y ∈ Rn with y ̸= 0, yT Qy > 0, we denote

Q ≻ 0

Theorem 9.2

Let S ⊆ Rn be a convex set, let f : Rn → R be twice differentiable, TFAE:

1. f is convex on S;

2. f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) for all x, x̄ ∈ S;

3. (∇f(x)−∇f(x̄))T (x− x̄) ≥ 0 for all x, x̄ ∈ S;
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4. ∇2f(x) ⪰ 0 for all x ∈ S.

Proof. The idea is that for x, x̄ ∈ S, define g(λ) = f(λx + (1− λ)x̄).

f(x)

x

f(x̄)

x̄

g(λ)

so we have g′(0) = ∇f(x̄)T (x− x̄).

Example 9.2

Consider f : Rn → R defined as
f(x) = ∥x∥2 =

∑
j

x2
j

then we have

∇f(x) =


2x1

...
2xn


and

∇2f(x) = 2I

Note 9.3

We have
yT [∇2f(x)]y = 2yT y = 2 ∥y∥2 ≥ 0

hence f is indeed a convex function.
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9.2 Local vs. Global Optimality

Consider the (NLP) and let S denote its feasible region.

Definition 9.5: Global Optimum

A point x∗ ∈ S is a global optimum if

f0(x∗) ≤ f0(x), ∀ x ∈ S

Definition 9.6: Local Optimum

A point x′ ∈ S is a local optimum if there exists ε > 0 such that

f0(x′) ≤ f(x), ∀ x ∈ Bε(x′) ∩ S

Theorem 9.3

If (NLP) is a convex program, then x∗ is a local optimum if and only if x∗ is a global optimum.

Proof. [Backward direction]: this is the easy direction.
[Forward direction]: Suppose for a contradiction that there exists x̄ ∈ S such that f0(x̄) < f0(x∗). Define

y := λx̄ + (1− λ)x∗, for λ ∈ (0, 1)

we know that f0 is a convex function, so

f0(y) ≤ λf0(x̄) + (1− λ)f0(x∗) < f0(x∗)

Then for any ε > 0, we may pick λ small enough so that y ∈ Bε(x∗) ∩ S.

Discovery 9.2

Easy to see that if fi’s are non-convex, then we have a hard problem. For instance, suppose we have a
binary program

min cT x

s.t. Ax ≤ b

x1 ∈ {0, 1}n

which no one knows a good algorithm to solve (yet). Note that the above program is equivalent to

min cT x

s.t. aT
i x− bi = 0, ∀ i = 1, . . . , m

xj(1− xj) = 0, ∀ j = 1, . . . , n

Lecture 21 - Tuesday, November 26
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Proposition 9.2

Consider a convex optimization problem and f0 differentiable. Let S be the feasible region, then x∗ is
optimal if and only if

∇f0(x∗)T (x− x∗) ≥ 0, ∀ x ∈ S

Proof. [Backward:]
By convexity, we have

f0(x) ≥ f0(x∗) +∇f0(x∗)T (x− x0) ≥ f0(x∗) ∀ x ∈ S

[Forward:]
The rough idea is that if there exists x ∈ S such that

∇f0(x∗)T (x− x∗) < 0

Then define g(λ) = f(λx + (1−λ)x∗). This way, we have g′(0) = ∇f0(x∗)T (x−x∗) < 0, which gives us that
x∗ is not optimal.

Corollary 9.1

If f0 is convex and differentiable, then x∗ is optimal solution to

inf f0(x)
s.t. x ∈ Rn

if and only if ∇f0(x∗) = 0.

9.3 Lagrangian Duality

Consider the non-linear program

inf f0(x)
s.t. fi(x) ≤ 0, ∀ i = 1, . . . , m

(NLP)

Definition 9.7: Lagrangian

We define
L(x, λ) := f0(x) +

m∑
i=1

λifi(x)

L is a function from Rn × Rm → R and is called the Lagrangian. λ1, . . . , λm are called Lagrangian
multipliers accosiated with (NLP).
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Proposition 9.3

Let
S = {x ∈ Rn : fi(x) ≤ 0, ∀ i = 1, . . . , m}

If x̄ ∈ S, λ ≥ 0, then
L(x̄, λ) ≤ f0(x̄)

Proof. We have
∑

i

λifi(x̄) ≤ 0.

Discovery 9.3

Let
g(λ) = minx∈RnL(x, λ)

it follows that for any λ ≥ 0 and x̄ ∈ S, we have

g(λ) ≤ f0(x̄)

Thus we get a lower bound for the optimal value for any λ ≥ 0. Recall that in duality, we wanted to
find the highest lower bound, thus we want

max g(λ)
s.t. λ ≥ 0

This is called Lagrangian Dual.

Definition 9.8: Lagrangian Dual

This is called Lagrangian Dual.

9.3.1 Weak Duality

Proposition 9.4: Weak Duality

If x̄ ∈ S, λ ≥ 0, then
g(λ) ≤ f0(x̄)

Example 9.3

Consider
inf (x1 − 1)2 + (x2 − 1)2

s.t. x1 + 2x2 − 1 ≤ 0
2x2 + x2 − 1 ≤ 0
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Then we have
L(x, λ) = (x1 − 1)2 + (x2 − 1)2+

λ1(x1 + 2x2 − 1)+
λ2(2x2 + x2 − 1)

(Check if L(x, λ) is convex on x for fixed λ). We wish to solve for g(λ) = minx∈R2L(x, λ). Compute to
solve ∇xL(x, λ) = 0 we obtain (

2(x1 − 1) + λ1 + 2λ2

2(x2 − 1) + 2λ1 + λ2

)
=
(

0
0

)
which yields us the solution

x∗
1 = −λ1 − 2λ2

2 + 1 and x∗
2 = −2λ1 − λ2

2 + 1

Thus we have
L(x∗, λ) = −1.25λ2

1 − 1.25λ2
2 − 2λ1λ2 + 2λ1 + 2λ2

so
sup g(λ)
s.t. λ ≥ 0

= sup L(x∗, λ)
s.t. λ ≥ 0

For λ =
(

4
9 ,

4
9

)
, we have L(x∗, λ) = 8/9. We also have f0

(
1
3 ,

1
3

)
= 8/9. So (1/3, 1/3) is our optimal

solution.

Note 9.4

Here comes a natural question to ask: “When does strong duality hold?”

For now, let us assume that f0, f1, . . . , fm are all convex. Also assume that there exists x̄ such that

fi(x̄) < 0, ∀ i = 1, . . . , m

9.4 Slater’s Condition

Definition 9.9: Slater’s Condition

The existence of such x̄ is called the Slater’s Condition.

Theorem 9.4

If f0, f1, . . . , fm are all convex, p∗ is finite, and Slater’s condition holds, then there exists λ∗ such that

inf
x∈Rn

L(x, λ∗)︸ ︷︷ ︸
g(λ∗)

= inf f0(x)
s.t. fi(x) ≤ 0, ∀ i = 1, . . . , m

Proof. Later (see 9.6.1).
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Example 9.4

Consider
inf x

s.t. x2 ≤ 0

Hence x = 0 is our only feasible solution, which is hence optimal. Notice that Slater’s condition does
not hold here. Here, we have

L(x, λ) = x + λx2

and

g(λ) = minxx + λx2 =

−∞ if λ = 0
− 1

2λ if λ > 0

which is an counter example of the above theorem when Slater’s condition does not hold, proving it is
necessary.

Suppose we have x∗, λ∗ optimal for primal/ dual (not always exist), then

g(λ∗) = minx∈Rn

[
f0(x) +

m∑
i=1

λ∗
i fi(x)

]

≤ f0(x∗) +
m∑

i=1
λ∗

i fi(x∗)

≤ f0(x∗)

If we want strong duality to hold, i.e.,
g(λ∗) = f0(x∗)

Hence we want both inequalities above to hold as equality.

1. If the first inequality holds as equality: we know that x∗ is optimal solution to

minx∈Rnf0(x) +
m∑

i=1
λ∗

i fi(x) ≡ minx∈RnL(x, λ∗)

This means that minx∈RnL(x, λ∗) = L(x∗, λ∗). If f0, f1, . . . , fm are all convex and differentiable, then

∇xL(x∗, λ∗) = 0

Strongerly, if f0, f1, . . . , fm are all differentiable, then

∇xL(x∗, λ∗) = 0

Hence strong duality tells us that if f ’s are differentiable, then

∇f0(x∗) +
m∑

i=1
λ∗

i∇fi(x∗) = 0
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2. If the second inequality holds as equality: we know that

λ∗
i fi(x∗) = 0, ∀ i = 1, . . . , m

which is the complementary slackness-type. Because it implies that we have (inclusive or)

λ∗
i = 0 or fi(x∗) = 0

Lecture 22 - Thursday, November 28

9.5 Karush-Kuhn-Tucker Conditions

Definition 9.10: Karush-Kuhn-Tucker Conditions

1. fi(x) ≤ 0, for all i = 1, . . . , m

2. λ ≥ 0

3. λifi(x) = 0 for all i = 1, . . . , m

4. ∇f0(x) +
∑m

i=1 λi∇fi(x) = 0

Consider
inf f0(x)
s.t. fi(x) ≤ 0 ∀ i = 1, . . . , m

(NLP)

where fi are differentiable.

9.5.1 Necessary Optimality Conditions

Theorem 9.5: Necessary Optimality Conditions

Suppose x̄, λ̄ are feasible for (NLP) and its dual such that f0(x̄) = g(λ̄), then KKT conditions hold.

Note 9.5

For p∗ and d∗ defined by

p∗ = inf f0(x)
s.t. fi(x) ≤ 0 ∀ i = 1, . . . , m

and

d∗ = sup g(λ)
s.t. λ ≥ 0

We may have

1. p∗ > d∗, or

2. p∗ = d∗ but there does not exist (x̄, λ̄) such that they satisfy KKT.
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9.5.2 Sufficient Optimality Conditions

Theorem 9.6: Sufficient Optimality Conditions

If x̄, λ̄ satisfy KKT and fi is differentiable and convex for all i = 0, . . . , m, then

f0(x̄) = g(λ̄)

9.6 Summary on NLP’s

Generic (NLP) Generic and Differentiable Convex Convex and differentiable
Weak Duality, d∗ ≤ p∗ Yes Yes Yes Yes

Slater ⇒ ∃ λ̄ : g(λ̄) = p∗ No No Yes Yes
Necassary KKT No Yes No Yes
Sufficient KKT No No No Yes

Example 9.5

Consider the example
inf (x1 − 1)2 + (x2 − 1)2

s.t. x1 + 2x2 − 1 ≤ 0
2x2 + x2 − 1 ≤ 0

Then for the fourth condition in KKT, we have(
2(x1 − 1)
2(x2 − 1)

)
+ λ1

(
1
2

)
+ λ2

(
2
1

)
= 0

which could further gives

x∗
1 = −λ1 − 2λ2

2 + 1 and x∗
2 = −2λ1 − λ2

2 + 1

Then, one can try to see which λi is allowed to be zero by going through all the four possibilities to
get a KKT point.

9.6.1 Slater’s Condition Proof

Proof. This is the proof for the Theorem (9.4) in regards to Slater’s Condition.
Let

G =
{

(f0(x), . . . , fm(x)) ∈ R× Rm : x ∈ Rn

}
Also let

A =
{

(t, u) ∈ R× Rm : ∃ x ∈ R s.t. f0(x) ≤ t, fi(x) ≤ ui

}
Here are two examples for the sake of illustration

73



Example 9.6

For instance, consider

f0(x) = (x− 1)2

f1(x) = (x− 3)2 − 5

so we have G = {(x− 1)2, (x− 3)2 − 5 : x ∈ Rn}

−2 2 4 6 8 10

−5

5

10

t

u G

A

Example 9.7

For instance, consider

f0(x) = ex

f1(x) = (x− 3)2 − 5

so we have G = {ex, (x− 3)2 − 5 : x ∈ Rn}

−2 2 4 6 8 10

−5

5

10

t

u G

A

Claim 1: A is a convex set
Proof of claim 1 : exercise.
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Claim 2: we have p∗ = inf{t : (t, 0m) ∈ A}
Proof of claim 2 : For any (t, 0) ∈ A, there exists x̄ such that

f0(x̄) ≤ t and fi(x̄) ≤ 0

This implies that p∗ ≤ t. If for some ε > 0 we have p∗ + ε, then this implies that there exists x̄ such that

f0(x̄) ≤ p∗ + ε and fi(x̄) ≤ 0 ∀ i ∈ [m]

because p∗ = inf f0(x) such that fi(x) ≤ 0. Furthermore, this means that p∗ + ε is not a lower bound on
t : (t, 0) ∈ A.
Also fix λ̄ ≥ 0. We consider

g(λ̄) := inf L(x, λ̄) s.t. x ∈ Rn

Claim 3: we have

g(λ̄) = inf
{

t +
m∑

i=1
λ̄iui : (t, u) ∈ A

}
Proof of Claim 3 : We have

g(λ̄) ≤ f0(x) +
m∑

i=1
λ̄ifi(x) ∀ x ∈ Rn

which implies that

g(λ̄) ≤ t +
m∑

i=1
λ̄iui ∀ (t, u) ∈ A

and if ε > 0, consider g(λ̄) + ε, there exists x̄ such that g(λ̄) + ε > L(x̄, λ̄), which implies that there exists
(t̄, ū) ∈ A such that

t̄ +
m∑

i=1
λ̄iūi < g(λ̄) + ε

Now let B = {(s, 0) ∈ R×Rm : s < p∗}. We know that B is a convex set and B ∩A = ∅. This implies that
there exists γ̃, λ̃ ∈ R× Rm such that (γ̃, λ̃) ̸= 0 and α̃ ∈ R such that

λ̃T u + γ̃t ≥ α̃, ∀ (t, u) ∈ A
λ̃T u + γ̃t ≤ α̃, ∀ (t, u) ∈ B

But since we can increase u, t arbitrarily large by the definition of A, we must have λ̃, γ̃ ≥ 0.

Lecture 23 - Tuesday, December 03

For (s, 0) ∈ B,
γ̃ · s ≤ α̃, ∀ s < p∗

thich implies γ̃p∗ ≤ α̃. Therefore, for all x ∈ Rn,

m∑
i=1

λ̃ifi(x) + γ̃f0(x) ≥ α̃ ≥ γ̃p∗

1. Case 1: γ̃ > 0
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We define λ∗ := λ̃

γ̃
, so for all x ∈ Rn, we have

m∑
i=1

λ∗fi(x) + f0(x) ≥ p∗ ⇒ g(λ∗) ≥ p∗

and since weak duality holds, or g(λ∗) ≤ p∗, we must have g(λ∗) = p∗.

2. Case 1: γ̃ = 0
For all x ∈ Rn, we get

m∑
i=1

λ̃ifi(x) ≥ 0

Let x̄ be such that fi(x) < 0 for all i = 1, . . . , m. Combining with the fact that λ̃ ≥ 0, we must have
λ̃ = 0. However, this contradicts the fact that (λ̃, γ̃) ̸= 0.

9.7 Sufficient Conditions for Having Optimal Solution to (NLP)

Theorem 9.7

If f0 is continuous and feasible region is compact, then the (NLP) has an optimal solution.

Theorem 9.8

If there exists α such that the set{
x ∈ Rn : f0(x) ≤ α

fi(x) ≤ 0, ∀ i = 1, . . . , m

}

is non-empty, closed, and bounded, and f0 is continuous. Then there exists an optimal solution.
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10 Algorithms for Convex NLP

I am going to be really Handwavy

Ricardo Fukasawa

10.1 Unconstrained Problems

Consider the program
min f0(x)
s.t. x ∈ Rn

Our goal is to find x∗ such that ∇f0(x∗) = 0.

10.1.1 Descent Methods

Algorithm 10.1

1. Start from xi ∈ Rn;

2. Find dk ∈ Rn such that (
dk
)T ∇f0(xi) < 0

3. Find step size tk;

4. xk+1 ←− xk + tkdk.

10.2 Constrained Problems

Consider the problem
min f0(x)
s.t. fi(x) ≤ 0, ∀ i = 1, . . . , m

We also assume the following things:

• There exists an optimal solution;

• f is convex and differentiable;

• Slater’s Condition holds here.

Our problem is equivalent to

min f0(x) +
m∑

i=1
I−(fi(x))

where we define I− : R→ R ∪ {∞} by

I−(u) =

 0, u ≤ 0
∞, u > 0
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Instead we consider the function
−
(

1
ζ

)
log(−u), for ζ > 0

which has the image as

Example 10.1: Plot of the function −
(

1
ζ

)
log(x) for ζ = 1 and 2

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1

−5
−4
−3
−2
−1

1
2
3
4
5

x

−
(

1
ζ

)
log(x)ζ = 1

ζ = 2

Observe that our function is continuous and convex. Hence we wish to solve the unconstrained problem:

min f0(x) +
∑m

i=1

(
− 1

ζ

)
log(−fi(x))

s.t. x ∈ Rm
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11 Comments on CO Courses

• Discrete Optimization:
CO452 CO450 CO353

• NLP:
CO367 CO471(SDP ) CO463(Convex)

• Network Flows:
CO351

• Game Theory
CO456
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