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Lecture 1 - Thursday, September 05

1 Optimization Problem

Definition 1.1: Optimization Problem

Given S C R™ and a function f: R™ — R, and optimization problem is a problem of the form:
max f(z) s.t. reS (opt)

where
1. S is called feasible region,;
2. A point ¥ € S is called a feasible solution;
3. f(z) is objective function valued at z.

Remark: (opt) stands for
Find 2™ € S such that f(z) < f(z*) forallz € S

If 2* is found, it is called an optimal solution and f(z*) is optimal value.

max{f(z):z €S} or maxgesf(x)

Definition 1.2:

Analogous definitions hold for minimization as well.

Notice that we have
[maxf(z) s.it. x € S| = [(=1) - min(—f(z)) s.t. x € 5]

This tells that

x* is opt for max problem <= z* is opt for min problem

and f(z7) = =1 (=f(z")).

1.1 Problems encountered

We may find problems when solving optimization problems: Optimal solution may not exist:



1. S = & (problem is infeasible);
2. (opt) may be unbounded, i.e. Vo € R, 3z € S such that f(z) > o
3. Optimal solution does not exist because of limits.

Example 1.1

An example would be

min e* s.t. z€R

Definition 1.3: Supremum
We have
—00 ifS=9g

sup{f(z):z € S} = ¢ 400 if (opt) is unbounded
min{( € R: (> f(z)Vz €S} otherwise

Now supremum always exists and is well-defined.

Definition 1.4: Infimum
In terms of infimum, we have

inf f(z) = —sup(—f(x))

zeS z€S

2 Linear Programs (LP)

Definition 2.1: Linear Program

In LPs,
S={zreR": Az <b}

where A € R™*" b € R™ and f(z) = ¢z for some ¢ € R". i.e. an LP has the form
max ¢’z s.t. Az <b

Strick inequalities are NOT allowed.

Definition 2.2: Inequality in R™

For u,v € R™,
u<v <= u;<v,Vi=1....m



Notice that for u,v € R™,
u £ v is not the same as u > v

Example 2.1

As an example, consider the LP:

X S 2
<2
max 2x1 + 0.5x9 s.t. T2 =
1 +a9 <3
x>0
Solution: Thus we have
2
Tr1 = 2
1 0
0 1
1,2
11 (””)g(z 2 30 o) (0,2 (1.2) vy =2
x2
-1 0
0 -1
> L1
(2.0)  m1+a2=3

Therefore the optimal solution in this case would be the point (2,1). O
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Definition 2.3: Halfspace, Hyperplane, and Polyhedron

Given f € R™, d € R, the set
{mER":foSd}

is called a halfspace. The set
{x eR": fT2 =d}

is called a hyperplane.

A hyperplane is a generalization of the plane in d-dimensional space, it divides the space into two
halfspaces.

The set
{zr e R": Az < b}



is called a polyhedron.

Notice that a polyhedron is the intersection of numerous (finitely many) halfspaces.

2.1 Determining Feasibility

The question is: Is
{zeR": Az <b} =02

Notice that for n = 1, the problem is easy to solve. For the case when n = 0, we define Az to be the zero
vector, thus all that we need to do is to check if b has all its components non-negative. For the general case,
the idea is: We wish to reduce the problem to a lower dimension (inductively), so we can solve problems

with higher dimensions.
Definition 2.4:

Let S = {(z,y) € R™ x R? : Az + Gy < b}, then
proj,(S):={z €R": JyecRPst. (x,y) €S}

i.e., the (orthogonal) projection of S onto z.

Example 2.2

proj, S

Suppose P = {z € R" : Az < b}, then
P#@ <= proj,, . (P)#9

In other words, the non-emptiness of the polyhedron is equivalent to the the non-emptiness of all the

projections.




1. Let a;;’s to be the entries of A;
2. Let

e M={1,...,m}

o M* ={ie M :ay, >0};
o M~ ={ieM:a;y, <0}
e M°={ie M :a;, =0};

Notice that

n
Ar <b +— Zaijxjgbi Vi=1,...,m

j=1
n—1
<~ Zaijxj—i—ammngbi Vi=1,....,m
j=1
n-lo b,
Lyi+a, < — Vi=M?t (1)
— Qin Qijn,
j=1
n-l b
= Yri+w, > — Vi=M" (2)
— Qin Qin
j=1
n—1
Zaijxj sz V’L:MO (3)
j=1

By combining (1) and (2) to cancel the like terms, we define

Qin Qfn

n—1
Z(%‘W)zjg(bim),weMﬂkeM (4)

Lemma 2.1

‘We have

Proj,, .. (P)={z€ R™!:3and 4}
—_———

* *ok

In other words,
Jxpy i (21,...,2,) EP <= {2z €R"':3and4}

Proof. Let x € R"~! satisfy (%), then there exists x,, such that (x1,...,7,) € P, and this implies that (3)
holds. But also (1) and (2) hold, and since (4) was obtained from (1) and (2), we conclude that (4) also
holds. This tells us that

Proj,, . a_,(P) C{zx € R"':3 and 4}



Now let x € R"~1 satisfy (). Then (because it satisfies (4)), we have

n—1

= 95 Qkn Qin Qin

Pick x, = maxyey- {LHS}, because we have both

n—1

ag; b g
E -z 4+ — < -z, and -z, < E ——Lx
— Qkn Qfn — An
Jj=1 Jj=1

so (z1,...,2,) € P.

2.2 Fourier-Motzkin Elimination

Let A" = A, and b = b. Given A%, b, obtain A*~! ( — 1 columns) and b*~1,

R:{xERZAZbeZ}#Q — H_lz{xeRifl:Aiflebifl}#g

Definition 2.5:

We denote
‘Pln:PZXRnfzan

n—1
j b ij bi . _
ST N Mg P e MY ke M
j=1

Therefore we have
P=0 = P'=2

and

P'=P xR " ={zcR": (A, 0)x < b;}
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Example 2.3

We start with

T1+ 229 <1
—xq S 0

—xr9 < =2

—31‘1 — 3$2 S —6

Py,=P} =Sz cR%:

Thus we have

12 1
-1

A? = 0 01 and  b* = 02
-3 -3 —6




Moreover, we have

1. Mt ={1};
2. M~ ={3,4};
3. M° = {2}.

Using the method introduced above, after scaling each inequality so that the coefficients of x5 is either
1 or -1, we get

x1+222 <1 o1+ 3 < g
—z1 <0 —z1 <0

=
—x9 < —2 —x9 < —2
—3181 — 31’2 § —6 —T1 — T2 S -2

Combining equation 1 and 3, 1 and 4 yields us

—X1 SO
1
P = JTERZ%S{ZlS—%
1 3
271 S 3
Thus we have
-1 0
1_ | 1 1_ 3
A= 3 and b = |-3
_1 _3
2 2
Now we have
—x1 <0 —x1 <0
Pf: reR?: %mlg—% = 1< -3
—31 < —3 —r1 < =3

Now we have

1. M+ ={2}

2. M~ ={1,2};

3. MY =g.
Since

< —
P} =Sz cR?: 0< -3
0<-6

We now know that P, = &.

Important
1. If A%, b’ are rational, then A*~', b*~! are also rational.

2. All inequalities in P* are non-negative combinations of Az < b.

3. If b= 0, then b* = 0 for all i.

10




2.3 Farkas’ Lemma

Theorem 2.1: Farkas’ Lemma

We have
P={zcR":Az<bl=0 <<= FJuecR"st. u’A=0,u"b<0,u>0

Proof. For the backward direction: Suppose & € P, then Az < b. Because we know that u > 0, so
uT Az < uTb. Therefore, 0 < uTb < 0 yields a contradiction.

For the forward direction: Suppose we know that
P={zeR": Az <b} =0

By Fourier-Motzkin, we have PJ' = @. This implies that there exists i such that b < 0. Since (0)z < 8° is

a non-negative combination of Az < b. The constraint corresponding to by can be obtained as:
uT Ax < uT, for some u© > 0

Have uT A =0 and u”b =8} < 0. O

Definition 2.6: Certificate of Infeasibility

u is called a certificate of infeasibility.

Corollary 2.1: Farkas’ Lemma Equivalent Statement
Exactly one of the following has a solution:
1. 3z e R" s.t. Az < b;

2. JueR" st uTA=0,uTb<0,u>0.

2.3.1 Farkas’ Lemma (Alternative Form)
Theorem 2.2
Exactly one of the following has a solution:
1. Ax =b, x> 0;

2. uTb <0, uTA>0.

Proof. Exercise. O

11



2.4 Fundamental Theorem of LP

Recall that an LP has the form

max ¢z st. Az <b (LP)
then (LP) always has exactly one of the three possible outcomes:
1. infeasible;
2. unbounded,;

3. there exists an optimal solution.

Proof. Suppose (1) and (2) are not true. If n = 1, then the problem has an optimal solution. Otherwise, we
define
maxz st. z2—clz <0 A Az <b (LP)

It is clear that (LP’) is neither infeasible or unbounded. Also, if (z*, 2*) is optimal solution for (LP’), then
a* is optimal solution for (LP). Apply Fourier-Motzkin to

z2—cTx <0
(x,2):
Ax <D

{zeR: A'2 <b'}

until we get

Then the problem becomes
max z s.t. Alz < b

which is obviously solvable. Solving this problem to obtain the optimal solution z*. Reconstruct using
Fourier-Motzkin the optimal solution (x*,z*) to (LP’). d

Lecture 4 - Thursday, September 19

The Fundamental Theorem of LP applies to ANY LP.
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3 Determining Optimality
Using an example for illustration:

Example 3.1

1+ 229 < 2
max 2x; +x2  s.t. x1+ a0 <2
1 — T2 S 05

0
Easy to notice that & = <1> is a feasible solution, but the question is whether or not x is optimal. It

1
is easy to observe that the answer is no, since we have z* = (0 5) is a better solution. However, here

comes another question. Is x* optimal?
Notice that any feasible solution satisfies:

T1 + 2z < 2 (x3)
&1 +$2S2 (X]-) = sum 2$1+l‘2§3
T — 29 < 0.5 (x%)

Notice that alternatively, we may also have

T+ 229 <2 (x1)
1+ a0 <2 (XO) =sum 2T1+T2 < 2.5
1 —22 < 0.5 (X]_)

1
This verifies that z* = <0 5) is our optimal solution in this particular example.

In general,

1171+2£172 SQ (Xyl)
x1 a9 <2 (Xy2)  =sum (W1 +y2+ys)z1 + 2y1 +y2 — y3)z2 < 2y1 + 2y2 + 0.5y3
x1 — 22 <05 (xys)

As long as y; > 0 for all i, y1 + y2 +y3 = 2, and 2y; + y2 — y3 = 1, we have

e < 291 + 22 + 0.5y3

for any feasible solution x.

13



To get the best possible upper bound, we should solve:

Y1 +y2+ys =2
min 2y; + 2y + 0.5ys  s.t. 201 +y2 —ys =1

Y1,92,y3 = 0
Definition 3.1: Dual
The above LP is called a dual LP.
In general, we have
Definition 3.2: Primal
max 'z st Ax <b (P)
ATy =
min by st y=c (D)
y=>0
3.1 Weak Duality Theorem
If z is feasible for (P), y is feasible for (D), then
e <bly

Proof. If Z is feasible for (P), then
Az <b
But since j is feasible for (D) (particularly that § > 0):
Tz = ATy =yT Az <yTb=1"y

as desired.

1. There is one variable in (D) for every constraint in (P). In other words, the size of y is the same

as the size of b.

2. There is one constraint in (D) for every variable in (P) (plus the non-negativity).

14



Corollary 3.1

If (P) is unbounded, then (D) is infeasible.

Corollary 3.2

If (D) is unbounded, then (P) is infeasible.

Exercise: There are examples where (P) and (D) are both infeasible.
Corollary 3.3

If 2 is feasible for (P), y* is feasible for (D), and ¢’ 2* = b y*, then * is the optimal solution for (P)

and y* is the optimal solution for (D).

(D) \ (P) | unbounded | infeasible | optimal

unbounded NO YES NO
infeasible YES YES ?
optimal NO ? ?

3.2 Strong Duality Theorem

If (P) has an optimal solution, denoted as z*, then (D) also has an optimal solution y* such that

Proof. Part 1: We first prove that (D) is feasible.

Suppose (D) is infeasible, i.e.,
ATy =
yeR™: =l gy
y=>0

By the alternative form of Farkas’ Lemma, we know that

uTAT >0 Au>0 Ad <0
Ju s.t. T <— du s.t. T <— dd s.t. T
utc<0 cu<0 cd>0

But then z* 4 d is feasible for (P) since
Alz*+d)=Az"+ Ad<b+0

However, notice that
a*+d)y=clz* +cTd> o

15



which contradicts the fact that 2* is our optimal solution for (P), thus we must have that (D) is feasible.
Part 2: By the Fundamental Theorem of LP and Weak Duality Theorem, (D) has an optimal solution.
Part 3: denote v = bTy*, and we consider

Az <
@:{xGR”: xT_b }
—ctr < —y

If ©® = @, then by Farkas’ Lemma,

’ A
Yy —0
T ATy = ¢
3 (i) Y (b <0 — JyeR™AeR": yTb< \y
A\ y>0,A>0
V>0
A
1. Case 1: A >0
Hence we have
AT (y/N) = ¢
b (y/A) <~
(y/A) =0

which contradicts the fact that y* is the optimal solution for (D).

2. Case 2: A=0

Hence we have
ATy =0
Ty <0
y>0

Now we have
AT(y*+y) :ATy*+ATy:ATy* —c

but
bT(y*+y):bTy*+bTy<bTy*

which again contradicts the fact that y* is the optimal solution for (D).

Lecture 5 - Tuesday, September 24

Definition 3.3: Certificate of Optimality

The y* introduced above is a certificate of optimality.
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In general, same results hold for

Ax?7b
max ¢’ x s.t. v (P)
70
ATy ?¢
min b7 D
y 470 D)
where the ? are replaced in regards to the chart below:
(P) max (D) min
< >0
Constr > Var <0
= free
>0 >
Var <0 Constr <
free =
Example 3.2
T +7x3 <5
23)2 —x3 2 3
max 221 + 3x2 —4xz  s.t. X +x3 =38 (P)
) S 6
z 2 0) T2 S 0
Then we would have the dual represented as
(1 +ys3 >2
. 2 + <3
min 5y; + 3y2 + 8yz + 6ys  s.t. Y2 v
Ty —Y2 +ys =—4
91207 y2§07 y420
3.3 What if primal is minimization
Example 3.3
211 +2x5 <5
_ >3
min z; —x2  s.t. o 2= (P)
T 53)2 =7
120, 22<0




2y, +y2 tys <1
max 5y; + 3y + Tyz  s.t. 3y1 —ys  +bys > -1 (D)
U1 < 07 Y2 > 0

Notice that here we use the “opposite” of the above chart.

If z is feasible for (P) and j is feasible for (D), then

Az >vTy

Strong duality still holds for (P) in minimization form.

If (P) is primal and (D) is dual, then the dual of (D) is (P).

3.4 Interpretations of the dual
3.4.1 Maximizing Profit
I wish to decide how much of two products to produce, and I have two resources available:

| Per unit profit | Resource Consumption A | Resource Consumption B
5 2 3
3 4 1

Product A
Product B

Suppose we have 15 units of resource A and 10 units of resource B. Therefore we wish to solve

2z; +4xzp <15

max dry + 3x S.t.
rren 301 4as <10

Suppose I am willing to sell resource A for y; dollars and resource B for yo dollars. Notice that with 2 units
of resource A and 3 units of resource B, I earn at least $5, thus

2y1 +3y2 > 5

Similarly,
dyr +y2 >3
Thus I wish to solve
2y1 +3y2 =5

min 15y; + 10 s.t.
. v dy1 +y2 =3

to figure out the least amount I could sell the resources for.

18



3.4.2 Vertex Cover Problem

Suppose I have the following: Three job candidates A, B, and C applying for two job positions. A, B, and
C applied for job position 1 and C has applied for job position 2.

21
11 Z32
x3
[Job 1| |Job 2]
What is the largest number of matches?
We wish to solve
T11 <1
To21 <1
x T <1
max xri1 + To1 + 31 + T32  sS.t. 31 trxz S

11 +x31 <1
To21 +x32 <1
T 0

Remark: the optimal solution to this is integral (not proven yet).
Notice that the dual for this problem would become

Y1 +Ya >1

Y2 +ys =>1

miny; +y2+ys+ya+ys st ys +ua >1
Y3 +tys >1

y =20

Definition 3.4: Vertex Cover Problem

Pick set of vertices with the minimum size such that every line (edge) touches at least one of the vertices
in the picked set.

Theorem 3.5

The optimal solution to the LP above (Vertex Cover Problem) has all variable either 0 or 1.

Lecture 6 - Thursday, September 26
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4 Graphs

Definition 4.1: Graph

A graph G is denoted by G = (V, E), where V is a finite set representing the vertices (nodes) and F
is a subset of pairs of vertices, or the set of edges.

Example 4.1

Thus we have

V= {1,2,3,4}
E= {{172}7 {273}7 {374}7 {47 1}a {la?’}}

Definition 4.2: Endpoint & Incident

A vertex v is an endpoint of an edge e if v is one of the vertices in the pair of e. In this case, we say

edge e is incident of v.
Example 4.2
In the above example, node 2 is an endpoint of edge {2,4} (sometimes we write edge 24 for simplicity),

and edge 24 is incident to 2, and 4.

Definition 4.3:

We define
d(v):={e€ FE:e is incident to v}

Definition 4.4:

Let S C V, we define
0S)={weE:ueSAvé¢S}

Definition 4.5: Adjacent

Two vertices u,v € V are adjacent if {u,v} € E.

20



Definition 4.6: Bipartite

A graph G is called bipartite if V = A U B. Consequently, if

u,v are adjacent = u€ AANv€EB

Example 4.3

4.1 Max Cardinality Matching in Bipartite Graphs
Definition 4.7: Matching
M C FE is called a matching if

[o(v) " M| <1, YoeV

Here is the problem: Given G = (A U B, E) a bipartite, we wish to find the matching M of G with
largest cardinality.

Definition 4.8: Decision Variables

We define
1 ifeeM
Te 1=
0 ife¢ M
Therefore, our problem becomes
ZEEJ(U)‘TG <1 VoveV
max er s.t. 0<z.<1, Ve€ekF
c€E xeZF

Recall that for the dual, we have one variable for each of the constraints, thus we may write down the dual:

+y,>1 V eFrE
min Zyv s.t. Yu T Yo = u

= Y >0, VoeV

21



Example 4.4

Here is another example. Consider G = (V, E) as a given graph. Let ¢, > 0 for all e € E be edge costs.
Denote the decision variable as . for all e € E.
Consider the LP:

Z T.=2, VYveV

e€d(v)
min Zcexe s.t. 2%22’ VSCVAIS >1

eeE e€d(s)

x>0
Now we have the dual:
Yu + Yo + Z ySSCuv, Yu e F
min 2 Z Yo + 2 Z ys s.t. SCV:|S|>1AuveS
veV SCV:|S|>1 ys >0, VSCV:|S>1

4.2 Complementary Slackness
Theorem 4.1
Let z* be feasible for primal LP, y* be feasible for dual LP. Then
(i). Either 27 = 0, or the corresponding dual constraint is tight at y*, for all j =1,...,n;
(ii). Either y; =0, or the corresponding dual constraint is tight at *, for all i =1,...,m.

(inclusive or, could be both).

Example 4.5

Suppose we have primal:

211 +3x9 <5

. T —T2 = 3
min r; —x2  s.t.

I +5£L’2 =7

120, 22<0
Thus the dual would be:

2y +y2 tys <1
max by; + 3y2 + Ty3  s.t. 311 —Yy2  +OYs >
y1 <0, y220

Solution: Then the C.S. tells us that

22



1. e 7 =0o0r2y; +y5+ys = 1; 2. e yI =0or 2z] + 325 = 5;
e x5 =0o0r3y] —y5 +5y; = —1; e y5s =0o0r a] —ai = 3;

e yz=0o0rz] +525=7;

as an example. O

Theorem 4.2: C.S.

Let z* be feasible for primal and y* be feasible for dual, TFAE:
1. z* is optimal solution for primal and y* is optimal solution for dual;
2. cTa* =bTy*;

3. x* and y* satisfy C.S.

Lecture 7 - Tuesday, October 01

Proof. [1] <= [2] This holds because this is equivalent to strong duality.
[2] <= [3] Assume we have

T Ax <D
max c T s.t.
x>0
ATy >
min b7y s.t. y=c
y=>0

We know that

Jj=1

and the constraint of the dual gives us that

m
c: < ait
J = ijYs
i=1

Because = > 0, we have
m
* * %
¢ < E @ijY; T
i=1

hence we have

m

T, % * *
ot <y | D aia; | u

n
i=1 \j=1

Feasibility of (P) yields that

n n
i=1 i=1
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Therefore, we have

ch* < szy: — bTy*
i=1
where the equality holds if and only if (1) and (2) both hold for equalities if and only if C.S. holds. O

4.2.1 Geometric Interpretations of C.S.

max ¢!z s.t. Ax <b (P)
ATy =

min by s.t. y=c (D)
y>0

We know that A can be written in the form of

S
C.S. (ii) tells us that
y; =0 or alz* =b;

and we know

m
ATy =c — Zaiyizc
i=1

and y; = 0 for all constraints that are not tight at «*. Thus, c is a non-negative combination of coefficients

that are tight constraints.

Example 4.6
Consider the example
X S 2
<2
max 2x1 + 0.5x9 s.t. 2 -
z1 +z2 <3
z >0
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T2

rot optimal

al, cannot be improved

¢ is a non-negative combination of coefficients that are tight constraints if and only if ¢ is in the cone
of tight constraints.

4.3 Characterizing Unboundedness

The problem
max ¢!z s.t. Ax <b

is unbounded if and only if it is feasible, and

3d:Ad<0,¢7d>0

Proof. [<=] Let = be such that Az < b, then for any a € R, consider z* + 8d for § > 0, we have
A(x* + Bd) = Az* + BAd < b

and
'z + Bd) > a
for some choice of 5 > 0, since

T, .x
a—c'x
e+ pctd > a for B> ——

[=>] Consider the dual
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We know that (P) is unbounded implies that (D) is infeasible. Thus by Farkas’ lemma, we know that there
exists u € R™ such that T A* > 0 and uL¢ < 0. Take d = —u. O

4.4 Geometry of polyhedra
Definition 4.9: Line Segment

Given ,y € R", the line segment between & and ¥ is the set of points

{xeR":x2 =X+ (1 - N)ys.t. Ae0,1]}

Definition 4.10: Convex

A set S CR™ is a convex set if for all Z,y € S, the line segment between T and § is contained in S.

< is convex.

Example 4.7

Not convex.

Convex.

Polyhedra are convex sets.

Proof. For
P={zeR": Az <b}

Let Z,y € P, and X € [0,1]. We have
APT+ (1= Ny <A+ (1= A)b

as desired. O

26



Definition 4.11: Convex Combination

Generally, for x1,...,x,x € R", we say that x is a convex combination of x, ...,z if there exists
A,y ..., Ak € R such that

k
xr = E )\i.’Ez‘
=1

with >, Aj=1and \; >0 foralli=1,... k.

Example 4.8

T

o The region enclosed by the shape to the left is the

set of all possible convex combinations of x1, ..., x7.

L4

The idea is that optimal solution happens at “corners”.

Lecture 8 - Thursday, October 03

4.5 Basic Definitions in Polyhedra
Let P ={x € R": Az < b}.
Definition 4.12: Extreme Point

Z € P is an extreme point of P if Au,v € P\{Z} and A € [0, 1] such that T = Au+ (1 — A)v.

Definition 4.13: Basic Feasible Solution

T € P is a basic feasible solution if there exist n linearly independent constraints alz < b; that
tight at z.

Definition 4.14: Vertex

T

T € P is a vertex of P if there exists ¢ € R™ so that z is the unique optimal solution to max ¢* z such

that x € P.
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Theorem 4.4
TFAE:
1. T is a vertex of P;
2. x is a basic feasible solution of P;

3. x is an extreme point of P.

Proof. [1 = 3]:
Suppose 7 is not an extreme point, so

=M+ (1-MNv for u,v € P\{z}, A €(0,1)

and this gives us that ¢I'z = AcTu + (1 — X)cTv for any ¢ € R™. However, for T to be the unique optimal

solution, we would have
r=x "+ 1 -Nc"z>Mlu+ (1-Nclv

which holds for strick inequality. Notice that we now obtain a contradiction, thus Z is a vertex of P implies
that z is an extreme point of P.

[3 = 2]:

Suppose Z is not a basic feasible solution. Let I C {1,...,m} be the indices of constraints tight at z, and
A; be the matrix obtained by deleating the rows from A that are not in I. Hence we have

rank(Aj) <n

Consider A;d = 0. By rank-nullity theorem, we know that there exists d # 0 such that the equality holds.
Let e > 0 and let u = & + ed, v = & — ed. Clearly, we have £ = 0.5u + 0.5v. Moreover, we have u,v € P
because at the tight constraints a; we have a;d = 0 and for the remaining constraints we may choose ¢ small,
thus this yields us a contradiction. [2 = 1]:

Let I be the set of indices of tight constraints at . Let ¢ =), _; a,. Thus for all z € P, we have

ch:E a?mgg bi:E alz=c"z

i€l i€l i€l

T

Notice that for ¢’z = ¢Z, we must have a; x = b; for all ¢ € I, hence the solution is unique. O

Theorem 4.5
Let P be a polyhedron with at least one extreme point, then if
T

max ¢ x s.t. rzeP

has an optimal solution, there exists an optimal solution which is an extreme point.
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Proof. Let & be an optimal solution to
max ¢’z s.t. x€P={x:Ax <b}

Let I be the index set of tight constraints at z. If rank(A,) = n, then we are done. Otherwise, pick d # 0
such that A;d = 0. For some € > 0, we know that £ + ed € P. Because we know that z is the optimal
solution, we have

Tr+ertd<cTz = Td<0

Similarly, because c¢Tx — exTd < ¢Tz, we get ¢cT'd > 0, thus we have ¢Td = 0. This tells us that Z +ed € P
are also optimal solutions. Suppose V & > 0, & +ed € P, then P does not have an extreme point (proof
will be later). This means that for the largest ¢ for which 4+ ed € P, some constraints alz < b;,i ¢ I
will become tight, so al'd # 0. Hence a; is linearly independent from A;. O

Now the questions arises:
when does a polyhedron attain extreme point

Lecture 9 - Tuesday, October 08

Definition 4.15: Line

Let z,d € R™ with d # 0, the set
{x+Xd:deR}

is called a line.

Definition 4.16:

We say a polyhedron P has a line if there exists z € P and d # 0 € P such that

{(z+Ad:deR}C P

Proposition 4.1

P ={x €R": Az < b} has a line if and only if P # @ and there exists d # 0 such that Ad = 0 if and
only if P # @ and rank(A) < n.

Proof. 1t is easy to see that
there exists d # 0 such that Ad = 0 if and only if P # @ and rank(A) <0

2 = 1]
Since P is non-empty, we have z € P for some z, then we have

A(@+ M) =AT+AAd=Az<b VAER
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which implies that z 4+ Ad € P for all A € R.
(1 = 2]
Since P has a line, we know that there exists Z € P, hence P # @. Suppose ald > 0, then there exists A
such that
al (Z 4+ \d) > b;

which implies that P does not have the line, contradiction. O

Theorem 4.6
A polyhedron P has an extreme point if and only if P # & and P has no lines.
Proof. Forward direction:

We prove this using contrapositive. If P = &, then P has no extreme point. If P is non-empty and P has a
line, then there exists d € R™, d # 0 such that Ad = 0. For any x € P, we have

1 1
z=5@+d)+5@—d

where both 1/2(x 4+ d) and 1/2(z — d) are feasible solutions.
Backward direction:
For any x € P, let I(z) be the indices of constraints tight at . Let & € P be a point with largest rank (A[(i)).
If the rank is n, we are done. Otherwise, we find d with d # 0 such that Ajzyd = 0, which implies that we
must have some ¢ € 1,...,m\I(Z) such that

ald#0

(else it would have a line). Therefore, we can find a point with more linear independent tight constraints
than z, which is a contradiction. O

Definition 4.17: Pointed

A non-empty polyhedron that has no lines is called pointed.

5 Midterm

This is the midterm cuff-off line.
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6 Cones and Extreme Rays

6.1 Cone

Definition 6.1: Cone

Aset CCR"isaconeifVeeC,VdeRwithd>0, \x € C.

Example 6.1

A line C = {c(1,1) : c € R} C R? is a cone.

In our class, we do not need the requriement that for ', 22 € C, 2! + 22 € C. We will instead call this

a convex cone.

Definition 6.2: Polyhedral Cone

A cone C' is called a polyhedral cone if C' can be written in the form of

C={zeR": Az <0}

Definition 6.3: Recession Cone

Given a polyhedron P # &, its recession cone is

rec(P)={reR":Z+X eP, VZeP, VA>0}

Theorem 6.1

If P={zeR": Ar < b} # &, then

rec(P) = {r e R": Ar < 0}

Proof. Tt is easy to see that
rec(P) 2 {r: Ar <0}

Pick r ¢ {r: Ar <0}, so al'r > 0 for some i € {1,...,m}. Then there exists A > 0 such that
T+Xr ¢ P = r¢rec(P)

hence we must have rec(P) C {r: Ar < 0}.
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Example 6.2

tec(P)

6.2 Extreme Rays

Definition 6.4: Extreme Rays

Let C be a cone, © € C' is an extreme ray of C if r # 0 and for any r',72 € C such that r is the line
segment between r! and 72, then r! and r? are non-negative multiplies of r.

Theorem 6.2

Let C = {x € R" : Az < 0} be pointed. Then r € C is an extreme ray of C if and only if r # 0 and
there are n — 1 linearly independent constraints tight at r.

Lecture 10 - Thursday, October 10

Proof. Let
. - -
o= Z a; and A= :
=1 B a% .

Note that if 7 # 0, r € C. Then there exists i : al 7 < 0 since otherwise we have Ar = 0 , which would imply
r = 0 because rank(A) = n. Therefore, a”r < 0. Take

<
p=lierr. 47 =0
oTe >-—1

A <
rec(P):{mER": z <0 }

Tz >0

Recall that

But Az < 0 implies that aT2 < 0, and this tells us that if # € rec(P), then x satisfies a’z = 0. Hence
Az = 0 implies that 2 = 0. Now let & be an extreme point of P. If a”’# > —1, then the n linearly
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independent constraints tight at & come from Az <0 = 2z =0.

T3 = —1, there are n — 1 linearly independent constraints from Ax < 0 tight at .

Otherwise, we have «
Now STP r is an extreme ray of C' if and only if there exists § > 0 such that r = & for some extreme point
% of P that satisfies aT2 = —1.

r
Remark: Note that for every r # 0, r € C, we have m is a point in P satisfying o (Ia;rl) =—1.
alr

1
(=) Hence we pick 8 = |aTr|, and let # = —7r, so a4 = —1. Now suppose & = 0.52! + 0.522 for

g
z', 2% € P\{z}. Then
Bz = 0.5 Bzt +0.5 fz?
—~ —~ ~~
r rl r2
But since r was an extreme ray, ' and 72 are multiples of r. Thus

rl=Alr, =42 for v, 4% >0

But 2! and z? must satisfy a”2! = a”2? = —1. Then
1 rt 717’ N
= = =7
@] ~ 37Ty
which is a contradiction.
<=) analugous. O
g

Definition 6.5: Ray

If P# @ and r is a ray (extreme ray) of rec(P), we say r is a ray (extreme ray) of P.

Proposition 6.1

Let P # @ and P has a ray r, then P has extreme rays if and only if P has no lines.
Proof. Skipped. Here is a sketch:
If it has a line, then you can use the line to write any extreme ray in terms of vectors that are not positive
scalars of itself.

If it has no lines, then A has rank n and you can use n — 1 linearly independent constraints to “construct”

an extreme ray. (Note that we know by hypothesis that the recession cone is non-zero) O

Proposition 6.2

Let @ # P = {x € R" : Az < b} be pointed. Let r!,..., 7 be its extreme rays. Then
maxc’ x s.t. zeP

is unbounded if and only if 3 j : ¢Tr7 > 0.
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6.3 Minkowski-Weyl

Let P # @ be a pointed polyhedron, then

P={zeR": SN =1
A>0, p=>0
where z',. .., x" are extreme points, and rh... ,re are extreme rays.

S Zf:l PYEAE Z§:1 !

Proof. We denote the big {} as Q.
Forward direction:
Let x € @, we have

k ¢
Az = Z N\ Azt + Z,ujArj
<~
=1 < a=lg
k

<> Ab+0=b

i=1

which implies that = € P, thus Q C P.
Backward direction: See below.

Corollary 6.1

The reverse of the above theorem is also true.

As a result, any polyhedron has two descriptions:

1. Intersection of finitely many inequalities (out description);

2. Convex combination of points and non-negative combination of rays (inner description).

Lecture 11 - Tuesday, October 22

Proof. We finish the proof for Minkowski-Weyl Theorem. Assume there exists w € P\ Q. Thus we know

that . } ; A
iz iwt Zj:l pg? w (@)
min 0 st SE N 1 () (QLP)
A>0, p=>0
is infeasible. Writing out the dual we have:
T, i ;
T a'zt +ag <0 Vi=1,...,k
+ .t. , D
max w” « + g s T <0 Vi1, .4 (QD)
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which we know is unbounded. Hence there exist @ and g such that
alw+ ag >0

Now consider
max &’z s.t. rzeP

which we know is feasible. Now we have two cases,

1. (%) has an optimal solution
In this case, (x) has an extreme point optimal solution. However,

adlw+ag>0>alsi+a = alw>als Vi=1,...

and there exists 7 such that &’z > aTw, which is a contradiction.

2. (%) is unbounded

Then there exists r € rec(P) such that
alr>0

In fact, there exists extreme ray r/ such that
alrd >0
But this contradicts the fact that @ and @ are feasible for (QD).

Hence we complete the proof.

Definition 6.6: Conv, Cone

Let ', ..., 2% € R, then we define

z _Zle)\zl'l
comy ({a ) = s 1 =S
A >0
We define )
— . 7
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Example 6.3

Shaded region: conv({z!,z? 23, 2°}) Shaded region: cone({r!,2,13})

6.3.1 Convex Hull

For all S C R"™, conv(S) is the smallest convex set containing .S, and is called a convex hull . (This

is the same as the previous definition for |S] is finite). Moreover, cone(S) is the smallest convex cone

containing S, called the cone generated by z',...,zF. (Again, in the case of |S| is finite, this
coincides with the previous definition as well).
Definition 6.7: Minkowski Sum
Let S,T C R™, the Minkowski Sum of S and T is
r =a+b
S+T:=
acS beT

Note 6.1

IfS=2=T,then S+T = @.

Minkowski-Weyl says that if P # @ and pointed, then
P = conv(E) + cone(R)

where F is the set of extreme points, and R is the set of extreme rays.
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Example 6.4

conv(E) + cone(R)

Corollary 6.2
Let z',...,2" € R” and r!,... ,rf € R, let

P :=conv({z',...,2"}) + cone({r',...,r})
Then P is a polyhedron, i.e., there exist A and b such that

P={z:Ax <b}

Proof. We have

k i 0 i
x =D Nt D Y
P =proj, < (x,\,p): 1 = Zle Ai
A>0, p=>0

as desired.

Lecture 12 - Thursday, October 24

Note 6.2
|_In class midterm today.

Lecture 13 - Tuesday, October 29
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7 Simplex Algorithm

Definition 7.1: Standard Equality Form

An LP is said to be in standard equality form (SEF) if it is of the form

Proposition 7.1

Given any LP, there is an equivalent LP in SEF.

Proof. Here we only give the idea of the proof.

T

o If LP is minimization of ¢’ z, it is equivalent to solving for max — ¢’ and multiply the result by —1.

e Suppose we have aiTz < b; as a contraint, we simply add a variable s; > 0 and write al-Tx +s; = b;.

 Suppose we have al'z > b; as a contraint, we simply add a variable s; > 0 and write al x — s; = b;.

Note 7.1

The first s; is called the slack variable, while the second s; is called a surplus variable.

o If we have z; <0, we let 2 = —z; and replace x; in the original LP by —z’.

o If zj is free, we introduce a@ and x, such that xﬁ, z, > 0and let x5 = x; -z, .

Example 7.1: Free variable example

Suppose we have LP:

max (1 2 3)x

1 5 3 5
s.t. T = r1,T9 > 0, x3 free
2 -1 2 4

Solution: We set x3 := a — b where a,b > 0, and so the objective function has become

(123 -3) (a1 a2 a b)T

whereas the constraints has become

R O

I
R
NG
~—_
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as desired. O

Assume without loss of generality that rank(A) = m, because otherwise, the LP is either infeasible

or there are redundant constraints.
Note 7.2

Note that the polyhedra in SEF have no lines, so if they are non-empty, they have basic feasible solution,
which satisfies n linearly independent constraints out of Ax = b, x > 0 at equalities. We know that m

of them come from Az = b (assuming m < n), hence n — m of them come from z > 0.

Hence for a basic feasible solution, we will have z; = 0 for j € N C {1,...,n} with |[N| = n—m and Az = b.
Definition 7.2:

For a matrix M with n columns, and J C {1,...,n}. Matrix M is the matrix obtained by picking

columns in J.

Example 7.2

11 0 1 10
For M = and J = {1, 3}, we have M, = .
2 11 3 21

As a result, if we let B ={1,...,n}\N, then
Ar=b <<= Apxp+Anzny=0Db

If xny = 0, then we have RHS as Agxg = b.
Definition 7.3: Basis

B C{l,...,n} is a basis if Ag is a full rank matrix.
Definition 7.4: Basic Variable
Given a basis B, xp are basic variables, and x are nonbasic variables.

Given a basis B, associated basic solution is
xny =0 and a:B:AE;lb

Ifxp = Aglb > 0, then it is a basic feasible solution. In this case, we say B is a feasible basis.
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7.1 Canonical Form

Algorithm 7.1

Start with a feasible basis B, while there exists a better basis B’.

Suppose I have a starting feasible basis B, rewrite

max ¢’z max chB + c%xN max chB + c%xN +0
Az =b Apz Ayzy =b At Apx At Ay = AG'D
s.t. = st PP T ANTN s.t. OB BB A AN B
x>0 zB, Ny >0 rp, Ty >0
Note that

zp+ Ag' Avay — Ag'b=0€ R™
= —cg [:vB + AE;lANxN — Aglb] =0eR

Hence we may rewrite the objective function as

max cgacg + c%mN - cg [mB + AglANxN - A]_Slb]

= max cyry — ch AR Anoy + chAR'D
Now the LP becomes

max (017:, — G AR AN) an + chAR'D
¢ rp + AglAN.’L'N = Aélb
s.t.
zp, N >0

which is called the canonical form for basis B.

Let
Nt i=ck —cEAG AN

If v <0, then basis B is optimal, else there exists j € N such that ¢; > 0.
Example 7.3

Suppose we have
max (0 1 0 —1)z+240

and B = {1,3}, N = {2,4}. Then we have

1
Wz( 1) and aa=-1,6=1
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7.2 Result of Equivalent LP’s

We have shown that the following four LP’s are equivalent:

max ¢’ x max cng + c?{,ajN
s.t “ (1) st BB +tANTN
> rp, N 20
max (CT — CEA;A) r+cpAG'D max cyry +cpAR'b
ARt Az = AG'b zp+ AR ' Avan = b

s.t.

(3)

x>0 rp,xny >0

7.2.1 Example of Simplex (details missing)
Example 7.4

Suppose we have the LP as

max (2 11 oo)x

1 2 -1 10 2
xr =
s.t. 2 -2 -1 0 1 3

x>0
Let B = {1,4}, then the LP becomes
2
Z1
max (2 0)( >+(1 1 0) T3
T4
Zs5
Z2
L) (wm), (2 -1 0 (2
2 0/ \uz 2 1 1)) T \3
x5
s.t.
X2
<$1>20, s | >0
T4
x5

and

max (0 3 2 0 —1)95

1 -1 =05 0 05) (15
st. \o 3 —-05 1 —-05/" \o05

x>0

41



and

T2
max (3 2 —1) z3 | +3
Ts
)
<x1>+<—1 05 0.5) o :<1.5>
4 3 —05 —05 0.5
st o (4)

/N
8 8
=
~—
A%
N
8 8
w N
V2
o

Note 7.3

If e’ = (7' — L A5 A), is vector of reduced costs.

Lecture 14 - Thursday, October 31

If ¢ <0, then B is an optimal basis, corresponding BFS is an optimal solution. Else there exists j such
that ‘c; > 0.

Example 7.5

Continue the above example. In (3), suppose we want to increase x2 from 0 to € > 0 (we keep equality
so that e could take 0), while keeping z3 = 25 = 0. Thus we have

T -1 1.5 r1=154¢ >0 [ 3 1]
+ = <~ = € |—=, =
Ty 3 0.5 s =05—-3 >0 2°6
Take ¢ = 1/6, we have 1,22 # 0 and 23 = x4 = x5 = 0, which implies that we arrive at a new basis
B={1,2} and N = {3,4,5}.
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7.3 Simplex Algorithm (basic idea)
Algorithm 7.2
1. Start with a feasible basis B;

2. Write LP in canonical form for B;

3. If ¢ < 0, we halt and conclude that B is optimal basis. Otherwise, we procees to next step;

4. Pick j € N such that ¢; > 0 entering the basis. Figure out which variable leaves the basis;

5. The new basis B’ becomes (B\{k}) U {j} and go to step 2.

7.3.1 Variable Leaving Basis
o Call A= AZ'Aand b= Ag'.
e For every i =1,...,m, let B(i) be the corresponding basic variable.
o Increasing x; to € will mean that zp(; will
— increase by |az;e if a;; < 0, or
— decrease by |a;|e if a; > 0

. b;
o Compute min;.z7>0—
(227

Note 7.4

Currently zp(;) = b;, when we increase z; to €, we have

=3

%

for @;; > 0

xB(i)ZE—WﬁZO = <

S
[

?

b b;
e Let ¢ be such that :e = min;gz;;>0—, we then have k = B(l).
agj aij
7.3.2 Questions arising (Bland’s Rule)

Note 7.5

Does this converge? In other words, do we halt after a finite number of steps.

If at current BFS we have a basic variable = 0, we may have ¢ = 0 — May lead to cycling. (i.e. return

to current basis in future iteration)

Proof. If problem has optimal solution AND ¢ is always > 0, simplex finishes as we always get stricktly

better solution and ther eare only finitely many bases.

Here we introduce Bland’s Rule: if there are multiple choices of entering or leaving variables, always pick

lowest index variable.
Using Bland’s Rule avoids cycling.
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Note 7.6

What ifaij <0foralli= 1,...,’[7?,?

Proof. Then the LP is unbounded.

Here is a quick discovery: For the LP:

max chB + c%xN

Apzp + Ayxny = b
rp,zn >0

s.t.

we consider its dual:

min by
yTAp >k

s.t.
yTAn > &

For x is a basic feasible solution, we know that zy = 0 and zp = Aglb. To guarantee that, we need
to satisfy Complementary Slackness, namely we need to have

yTAp=cp = y" =cpAg
The dual feasibility further yields us

yTAn > ek <= CcLAZ'AN >k = ch —chAZ AN <0

which is exactly the point we reach an optimal solution in the algorithm.

Lecture 15 - Tuesday, November 05

7.4 Geometric of the Simplex Algorithm

Here we use [ ] to denote a variable entering the basis, and O to denote a variable leaving the basis.
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Consider the following LP:

max 1+ To L2
s.t. T, —x9 <2 (1) \
1.5x1 + 29 < 3.5 (3)
0.2521 + 25 < 1 (4) 4
1 3
x1,22 >0 W712) N3)
Rewriting in SEF. In canonical form for B = {3,4,5,6}
max  ((1],1,0,0,0,0)x
1 -1 @M o0 0 0 2
1 0 0O 1 0 O 2
s.t. T =
1.5 1 0 0 1 0 3.5
025 1 0 0 0 1 1
x>0
Now the basis become Basis : {1,4,5,6}, and
max  (0,[2],~1,0,0,0)z + 2
1 -1 1 0 0 0 2
01 -1 @O oo .
0 25 —15 0 1 0| |05
0 125 —-025 0 0 1 0.5
x>0
Now the basis become Basis : {1,2,5,6}, and
max  (0,0,[1],—2,0,0)z + 2
10 0 1 0 0 2
ot 01 -1 1 0 0 0
.T. T =
00 1 —25 (Do 0.5
0 0 1 -125 0 1 0.5
x>0
Now the basis become Basis : {1,2,3,6}, and
max  (0,0,0,[0.5], —1,0)x + 2.5
10 0 1 0 o0 2
010 —-15 1 0 o 0.5
001 -25 1 0 o5
000 125 -1 (D 0
x>0
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Lastly, the basis become Basis : {1,2,3,4}, and

max (0,0,0,0,—0.6,—-0.4)z +2.5

10 0 0 08 -08 2
01 0 0 —-02 1.2 0.5
s.t. T =
001 0 -1 2 0.5
000 1 —-08 038 0
x>0
2
0.5
S . L 0.5 . .
which implies that our optimal solution is z = 0 and the optimal value is 2.5.
0
0

7.5 Mechanics

max (2,1,1,0,0)x

1 2 -1 10 2
€r =
st \[2] —2 -1 0 1 3
z>0

Our current basis is B = {4,5}. Notice that the smallest index j such that ¢; > 0 is j = 1, thus we have
entering the basis. Moreover, calculating 2/1 and 3/2 (b;/ax; for all k) we find 3/2 < 1/1, thus we have x5
leaving the basis. Now the new basis becomes B = {1,4}. We wish to make the boxed element to be 1 and
all other elements in the same column to be 0. By multiplying the boxed row by 1/2 and subtract it from
first row as well as the objective function, we obtain

=0

max (2,1,1,0,0)z + (—1) [(2, ~2,-1,0,1)z — 3}

0 3 -05 1 -05) _ (05
st. \1 -1 —05 0 05 ~\15
x>0

= max (0,3,2,0,—1)z+3

1 -1 05 0 05) (15
0 -05 1 —05)"  \05

x>0

[

S.T.

For our second iteration, we have x5 leaving the basis, and =4 entering the basis. Thus the new basis becomes
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B = {1,2}. We obtain:
max  (0,0,2.5,—1,—0.5)z + 3.5

10 —2/3 13 173\ (5/3
st. \0o 1 —1/6 1/3 —1/6)"  \1/6

x>0

In Simplex Algorithm, we move from a BFS along a direction d defined as

) =(7)

where 7 € N enters the basis.

~ Note 7.7
d4 -1
ds -2
In the example above, for B ={4,5}, | d; | = | 1 |. Moving from T to T + 6d.
ds 0
ds 0

Also note that
Ad = Apdp + Andy = Ap(—AZ"A;) + A; =0

which is essential since we are moving in a direction that only untights one of the constraints. Now if A_J <0,
then d > 0. And
¢'d=cp"dp +endy =7 > 0
=0
which implies that the LP is bounded.

Lecture 16 - Thursday, November 07

7.6 Dealing with Feasibility — 2-phase Simplex Method

We wish to solve

max cl'z
st. Ax =10 (SEF)
x>0

Our goal is to find a feasible basis B, or to show that none exists.
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7.6.1 Phase 1
Algorithm 7.3

e Assume WLOG that b > 0;

e Consider

max —elz
st. Azx+1z=0b (AUX)
z,z>0

Notice that the objective function is equivalent to min ), z;. Here we have several results:

— (AUX) has a BFS, and z is the basic variable, x is the non-basic variable;

— (AUX) has an optimal solution, since it is bounded below by zero in regards to the equivalent

form.

— If the optimal value for (AUX) is 0, then z; = 0 for all 4. This case yields us a feasible basis
B for (SEF) with only x variables in it.

— If the optimal value for (AUX) < 0, then (SEF) is infeasible.

7.6.2 Phase 2

Algorithm 7.4

If Phase 1 ended with a feasible basis B for (SEF), we run simplex on (SEF) with B as our starting
basis.

7.7 Brief Complexity of Algorithms (Handwavy)

Definition 7.5: Size

Given a problem instance I, the size(I) is the number of bits needed to represent it.

Example 7.6

For LPs:

~(mxn+n+m)

max bit size
of A,b,c

if A, b, and ¢ are integers.
Definition 7.6: Efficient

We say an algorithm is efficient if it runs in O(poly(size(I))) for all instances I. i.e., a polynomial

time algorithm.
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Simplex method is NOT a polynomial time algorithm.

“Bad” instances are pathological, (“happens rarely”).

7.7.1 Hirsch Conjecture

Suppose we have a polytope (a bounded polyhedron):
P={zeR": Az < b}

where A is m xn. Let u,v € P and define dist(u, v) to be the shortest path from u to v going through edges
of P.

Definition 7.7: Edge

Line segment between adjacent vertices.

Example 7.7

dist(u,v) = 2

Definition 7.8: Diameter

We define the diameter of P, diam(P), to be

dlam(P) = MaXy,y vertices €P {diSt(U, 1))}

Then the number of simples iterations is greater or equal to diam(P) (worst case).

The Hirsch conjecture states that

diam(P) <m —n
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Theorem 7.2: Santos (2010)

The Hirsch conjecture is false.

7.7.2 Polynomial Hirsch Conjecture

The conjecture states that
diam(P) < poly(n,m)

Notice that even if this is true, the Simplex method still has issues:
— degenerate iterations;

— choices of entering/ leaving variables determines the edge, but we do not know the rule that

allows us to guarantee < diam(P) iterations.

7.8 Polynomial Equivalence of Separation, Optimization, Feasibility
Definition 7.9: Separation Problem

Given a bounded polyhedron
P={zeR": Az < b}

and z € R". The separation problem is to determine if x € P or find «, o such that

ales <oy VzeP and al'z > o

Definition 7.10: Feasibility Problem

Given a bounded polyhedron
P={zxeR": Az < b}

Determine if P = @ or find z € P.

Definition 7.11: Optimization Problem

Given a bounded polyhedron
P={zeR": Az < b}

c € R"™ find if P = @ or find x € P such that

Tz >cTx VeeP
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7.8.1 Grotchel-Lovasz-Schrijver

We have TFAE:

1. Separation problem can be solved in polynomial time
2. Feasibility problem can be solved in polynomial time

3. Optimization problem can be solved in polynomial time

Proof. Opt = Feas: this is simple.

Feas = Opt: the idea is binary search. We ask the question: Is there 2 € P such that ¢’z > v, and we do
binary search on ~.

Opt = Sep: Idea in HW2Q4

Sep = Feas: GLS uses Ellipsoid Algorithm that uses separation to solve for feasibility.

Note 7.8
|_Ellipsoid—Karmarkar — first polynomial time algorithm for LP.

Overall, there is no known strongly polytime algorithm for LPs (2024 Nov). i.e., poly(n,m).
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8 Integer Programming (IP)

Now we would encounter problems like

max CT.%‘
st. Az <b (IP)
x; €L, Vjel

where ce Q®, Ae Q™™ beQ™and I C{1,...,n} with I # @.
Definition 8.1: Pure IP

If I ={1,...,n}, then the IP is called a pure IP.

Definition 8.2: Mixed IP

If T #{1,...,n}, then the IP is called a mixed IP.

Definition 8.3: Binary IP

If all variables are required to be in {0, 1}, then the IP is called a binary IP.

Definition 8.4: Integral

We say ¢ € R" is integral if z; € Z for all j € I.

Definition 8.5: Rational Polyhedron

P ={x € R": Az < b} is a rational polyhedron if A,b € Q as above.

Note 8.1

We denote
Pr ={x € P: x is integral}
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8.1 If P is a rational polyhedron, then conv(F;) is a rational polyhedron.

P; # @, then rec(conv(FPy)) = rec(P)

Theorem 8.1

If P is a rational polyhedron, then conv(Pr) is a rational polyhedron. If P; # &, then

rec(conv(Pr)) = rec(P)

Proof. Assume P # @ and pointed, also assume I = {1,...,n} to simplify proof.

If P = 9, then we may take

conv(Pr)={zeR":1<x; < -1}

If

which simply constructs an empty polyhedron arbitrarily. Therefore we may assume that P; # &, thus by

Minkowski-Weyl (6.3), we have

r =30 izt + 25—1 17 1 ;
- - x-,...,xP extreme points
P=<xeR": le)\i =1 , 1’ ’q
ro,...,r? extreme rays
A >0, ©w=>0
Note 8.2

Extreme points are rational. We may assume that extreme rays are rational too. Rather, we may even

assume that extreme rays are integral, since we can always scale them.

Now we define a bounded polyhedron:

X

T=<xecR":

Thus we have

Tr={ze€T:ze€Z"} and R =

Claim 1:
[D]: Trivial.

[C]: we have

x € Py

=

I

=Y et 25:1 !
f:1 Ai =1
A>0, 0<p <1, Vji=1,...q

q
T = Zujrj, JIPRS Zqzo
=1

Pr=T7r+ Ry i.e., Pr=TrUR;y

T = Z Nzt + Zuﬁ% since Pr C P
Yot (g = L) T+ L)
€

T ERy

Proax=t+reT+ R;
t=x—rez”
tel;

53



as desired.
Claim 2: conv(T; + Ry) = conv(Ty) + conv(Ry).
——

Py
Claim 3: conv(Ry) = rec(P).
The proof for claim 2 and 3 are skipped, they are not trivial. O

T T

8.2 maxc'z s.t. x € PP = max ¢ x s.t. x € conv(Py)
Theorem 8.2
We have

max clx ) max Tz

st. zePr [ ]| st.  x€conv(Pp)

Proof. Since Pr C conv(Pr), we have z1 < zs.
Note that if P; = @, then conv(P;) = &, which implies that 21 = 21 = —co. Thus we may assume that
Pr # @. Let * € conv(Py), this tells us that

3

P
z* :Z)\imi, Z)‘izl’ A>0,2t ..., 2P e Py
i=1

This implies that there exists ¢ such that

because otherwise we would have

Therefore, we must have z; = z5 as desired. O

Corollary 8.1

Suppose P is pointed, then conv(Py) is pointed, and any extreme point of conv(Pr) is integral.

Proof. (Pure integer case for simplicity)
We have
rec(P) 2 rec(conv(FPr))

which implies that conv(Pr) is pointed. Let * be an extreme point of conv(Pr), so there exists ¢ such that

*

x* is a unique solution to

max CTI'

st.  x € conv(Pr)

However, the theorem tells us that there exists Z € Py such that ¢!z = ¢T2*. But € conv(Pr) implies that

x* = & € Pr, which further implies that z* is integral. O
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Example 8.1

Suppose we have P = {x € R? : 25 > /211}, thus P; = P N Z>:

ARALILLANNNNNANNNNNNNNNNY

s
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

777777777

N NN NNUAN NN NNUSNNNNNNNAN NN

R A N e

B

Note 8.3

Notice that conv(Py) is not a polyhedron since it is not a closed set, so our theorem wouldn’t

apply in this case.

Lecture 18 - Thursday, November 14

Consequences:

max CTl'

st. Az <b

max CTI'

st. Az <b
x; €L, Vjel

Then (IP) is either infeasible/ unbounded/ or has an optimal solution.

o If (LP) is infeasible, then (IP) is infeasible.
o If (LP) is unbounded,

— If Pr # @, then (IP) is unbounded;
— If P = @, then (IP) is infeasible.
o If (LP) has an optimal solution,

— If P; # &, then (IP) has an optimal solution;
— If P = @, then (IP) is infeasible.
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Note 8.4

Separation, Optimization, and Feasibility for conv(P;) are all “polynomially equivalent”.

Note 8.5

Input size of (IP) is approximately the input size of (LP).

8.3 Cutting Plane Algorithm

It is hard to compute conv(Py), so we try to produce sequence of polyhedra that are “closer” to conv(Pr).

Definition 8.6:

We call (LP) the LP-relaxation of (IP).

Definition 8.7: Valid

We say an inequality o’z < aq is valid for S C R" if o’z < ag for all Z € S.

Example 8.2

Geometric interpretation:

valid inequality for Py

It is reasonable to assume that (LP) has an optimal solution.

Algorithm 8.1

Let R+ P = {z: Az < b}.
Do, while R neq @

| Let z* be opt. sol. to
| max ¢! x
I st.xe€R
| If 2* is integral, stop.

| z* is opt. sol. for (IP)
|

Else, find aTz<aqy valid for P; such that oTz* > ay,
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| R+ Rn{z:aTz <ap}

Return P; = @.

Note 8.6

At all times,

and we have

max CTJI < max CTZC

st. xeP; — st. x€R

z1 ZR
If x* is integral, then
*eP; = zp=c 2" <z;<zp

which implies that z* is optimal solutions for P;.

Proposition 8.1
Let R be a pointed polyhedron such that Py C R C P. Let =* be a BFS of

max CT T

st. z€R

Then z* is integral if and only if 2* € conv(Py).

Proof. exercise.

This suggests that cutting plane algorithm is well-defined if x* is a BF'S.

8.4 Chvéatal-Gomory (CG) Cuts

e Assume I = {1,...,n} (this is crucial);
o Assume P = {z: Ax = b, > 0} (for convenience).

Now, z* is a BFS, i.e.

and in canonical form for B:
B +A§1AN.'EN = Aglb Z:B
—
An
xp,xzy > 0. Since z* is not integral, there exists ¢ such that b; ¢ 7. Consider

reR": ZTp(i) T Zjezv aijxj = bi =K
zpwy =20, zn 20
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— Note 8.7

If aTx < g is valid for K N Z", then it is valid for PN Z"™ = P;, since

PNZ*"CKnNnZ®

— Note 8.8

If o’z < g is valid for K NZ", then «; = 0 for all j € B\{B(i)}.

Now we have

Tp@) + Z lag;]z; < b;
JEN

is valid for K, since zy > 0. We know that zp(;) is an integer because we care about K NZ", and laij], ;

are all integers. Therefore we have

Tp(i) + Z LC_LijJLEj < I_BzJ (*)

JEN
is valid for K N Z™, hence is valid for Pj.
— Note 8.9
For z = x*,
Tha) = b; and 2y =0

which implies
Tha + O lai)a) = ahe =bi > b
JEN

i.e., we found Tz < o valid for P; and with a”z* > ao.

Geometrically, we have

marily touching
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(*) is called a CG-cut.

~— Note 8.10

A cut is just a valid inequality violated by x*.

CG-cutting plane algorithm terminates after finitely many iterations.
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8.5 Branch and Bound
8.5.1 Branch

Consider the IP:

Zrp = Imax CT.'E

st. Az <b (IP)
x; €%, Vjel

~— Note 8.11

We assume that I = {1,...,n}. Also assume IP relaxation has an optimal solution.

Consider a € Z, j € I and two integer programs:

21 =max clz
.. Arx <b
i vo= (IP1)
z; <a
r €Z”
29 =max clz
. Axr <b
i s (IP2)
z; 2a+1
r eZ”

Notice that if 2* is the optimal solution for (IP), then it is either feasible for (IP1) or (IP2). Then
zrp = max{z1, 22}

We will represent this by a B&B tree:
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Example 8.3

Althought the number of problems grow exponentially, but the problems are simplified as we branch.
Definition 8.8: Branching

This is what’s called branching.

8.5.2 Bounding
The idea here is:

Look at a node of the B&B tree.
Let

max ¢’z

st.xr€R

be the LP relaxation of the corresponding IP.

If R = @, then the corresponding IP is also infeasible, thus we may stop branching from that node.
We call this “Fathom/ Prune by Infeasibility”.

If 2* is an optimal solution for LP relaxation

max CTJ,'

st. z€R

of a node in the B&B tree and is integral, then x* is optimal for the IP corresponding to that node,
we stop branching in this case as well.

We call this “Fathom/ Prune by Optimality”.

~— Note 8.12

At any point of the time, we keep track of the best integral solution and value found at that time. At




the start, we set

Zpest — —OO

Tpest +— undefined

When pruning by optimality, if ¢72* > zpeq, We set

Zpest — clat

*
Thest < X

If * is optimal solution to LP relaxation of a note in the B&B tree and
' < Zpest

so one cannot find a better integral solution than xyes;. We stop branching in this case.
We call this process “Fathom/ Prune by Bound”.

If all else fail, we look at x*, pick j such that =5 ¢ Z. Set a := [2}] and branch by adding z; < a,
z; > a+ 1 in the “child” nodes.

Example 8.4

This is an example as the Branch and Bound could potentially be a bad algorithm. Consider the IP

min 1 + s

st. x14+z2 >0.5
Iy 2 0
x €72

Consider the LP-relaxation, we found the optimal solution z* = (0,0.5)7 and the optimal value is 0.5.
Apply the algorithm with z*, we would have

Notice that if we choose the “bad” nodes, this might never terminate.
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9 Nonlinear Programming (NLP)

Definition 9.1: Convex Functions

Let S C R™ be a convex set, the function f :.S — R is a convex function if for all z,y € S and any
A €0,1],
fOz+ (1 =Ny) < Af(2)+ (1 =N f(y)

Example 9.1

f(z) is a convex function.

Definition 9.2: Strictly Convex

The function f:S — R is strictly convex if

fQz+ (1 =XNy) <Af(z) + (1 =N f(y)

for all z,y € S and any X € (0,1).

Let fo, f1,---, fm : R™ — R, NLP that we will focus on are

inf  fo(z)

. (NLP)
st. filz) <0 Vi=1,....,m
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Note 9.1
|_This is a inf problem.

Definition 9.3: Convex Program

If fo, f1,..., fm are convex functions, then (NLP) is called a convex program.

Proposition 9.1

If f:R™ — R is a convex function, then the set
{z eR": f(x)<a}=:8
is a convex set, where a € R is a real number.
Proof. Pick z,y € S, for any A € [0, 1], we have

FOz+ (1 =XNy) <Af(x)+ 1 - N)f(y)
<Ada+(1-Na

=q
which implies that Az + (1 — M)y € S as desired.
9.1 Gradient and Hessian
Definition 9.4: Gradient & Hessian
Let f: R™ — R be twice differentiable, then
af
87:1@3) o2t
Vfz) = : and V2f(z) = [ (;v)]
oz,

where V is known as gradient and V? is known as Hessian.

Theorem 9.1

Let S C R be a convex set, let f:.S — R be twice differentiable, TFAE:
1. f is convex on S;
2. f(z) > f(z)+ f(x)(x — z) for all x,Z € S;

3. (f'(x) = f'(@)(x—x) >0 for all z,z € S;
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4. f"(z) >0 forall x € S.

Proof. [(1) = (2)]: Suppose = > z, then

I
50 Az — )

Since we know that
FOz+ (1 =NT) < Af(x)+ (1 =N f(T)

so for A € (0,1),

fQe+ (1 =Nz) _ M)+ 1 =-N)f(@)

Mz —T) - ANz — Z)
fQz+ A =Nz) - f(7) _ M)+ A =-Nf@) - f(@) _ f@) - [@)
ANz — T) - Az — ) -z
We can now observe that B
iy < D=1

[(2) = (1]: Let z,z € S and A € [0,1], let y = Az + (1 — A\)Z, so we have

1-Nx  f@)
A f(@)

f(y)
f(y)

AVANLY]

+
+
Sum them up we obtain

(L= f(z)+Af(@) > (1 =N fly)+Afy)+
I =Nf' Yz —y) +Af'(y) (T —y)
=f)+ ([T =Nz —y) + AT —y)]

=0

The rest of the proofs are left as exercise.

‘The following proofs are my attempted proofs: ‘

[(2) = (3)]: By [2], we know that
f@) 2 f@) + (@) @—-7) and  f(7) > f2)+ [(2)(7 - =)
Summing them up we have

f@) + £(@) 2 f(@) + (@) - 7) + f(2) + f'(2)(Z - x)

which further yields us
0> (f'() — f'(2))(z - 7)
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[(3) = (2)1: WLOG assume = < z. By MVT, we know that there exists ¢ € (z,Z) such that

Moreover, by [3] we know that
[f'(x) = (O] (x—c) =20  and [f'(e) = f(@)](c—2) =0
which implies that f'(Z) < f'(c) < f'(c). Thus we have

fl@)=f(@) + fl(o)(x—2) = f(@) + f(@) (2 - 7)

In general, we know that if f is convex on S, then

e Forall x,z € S5,

f@) > f@)+ V@) (z—2)

e Forall x,z € 5,
(Vf(a) = V@) (@ -7)>0

e Forallz € S,
V2 f(x) is P.S.D. (positive semi-definite)

— Note 9.2

A symmetric n x n matrix Q is positive semi-definite (PSD) if for all y € R", 47 Qy > 0. We denote
Q=0
It is positive definite (PD) if for all y € R™ with y # 0, ¥y Qy > 0, we denote

Q-0

Let S C R™ be a convex set, let f: R™ — R be twice differentiable, TFAE:
1. f is convex on S;
2. f(z)> f(z)+ Vf(@)T(x —z) for all 2,7 € S;

3. (Vf(z) = Vf(@)T(z—2z) >0 for all 2,7 € S;

65




4. V2f(z) = 0 for all z € S.

Proof. The idea is that for z,z € S, define g(\) = f(Az + (1 — \)T).

so we have ¢'(0) = Vf(2)T (z — 7).

Example 9.2

Consider f: R™ — R defined as

then we have

2(111
Vi) =] :
22,
and
V2f(x)=2I
Note 9.3
‘We have

y V2 f @)y =29y = 2 |ly|?

hence f is indeed a convex function.

Y
o
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9.2 Local vs. Global Optimality

Consider the (NLP) and let S denote its feasible region.
Definition 9.5: Global Optimum

A point z* € S is a global optimum if

Jo(z®) < fo(z), Vazes

Definition 9.6: Local Optimum

A point 2’ € S is a local optimum if there exists € > 0 such that

fo(@') < f(), VzeB(s)NS

Theorem 9.3

If (NLP) is a convex program, then z* is a local optimum if and only if 2* is a global optimum.

Proof. [Backward direction]: this is the easy direction.

[Forward direction]: Suppose for a contradiction that there exists € S such that fo(z) < fo(z*). Define
y:= AT+ (1 - \)z*, for A € (0,1)
we know that fj is a convex function, so
foly) < Mo(@) + (1= A) fo(2") < folz7)

Then for any ¢ > 0, we may pick A small enough so that y € B.(z*) N S. O

Easy to see that if f;’s are non-convex, then we have a hard problem. For instance, suppose we have a
binary program

T

min c'zx
s.t. Az <D
xr] € {O7 1}”

which no one knows a good algorithm to solve (yet). Note that the above program is equivalent to
T

min c'x

s.t. a;frx—bi =0, Vi=1,....m

J}j(l—l‘j) :07 Vj:L...,TL

Lecture 21 - Tuesday, November 26
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Proposition 9.2

Consider a convex optimization problem and fj differentiable. Let S be the feasible region, then x* is

optimal if and only if
Vfo(z*)T (x — %) >0, Vxels

Proof. [Backward:]

By convexity, we have
fo(x) = fo(z*) + Vfo(e*) (z —z0) > fo(e*) Vzes

[Forward:]
The rough idea is that if there exists € S such that

Vo) (xz —2*) <0

Then define g(\) = f(Az + (1 — A)z*). This way, we have ¢’(0) = V fo(z*)T (z — 2*) < 0, which gives us that

z* is not optimal. O

Corollary 9.1

If fo is convex and differentiable, then x* is optimal solution to

inf  fo(x)
st. zeR"
if and only if V fo(z*) = 0.
9.3 Lagrangian Duality
Consider the non-linear program

Definition 9.7: Lagrangian

We define .
L(x,A) == fo(z) + > Aifi(x)
i=1
L is a function from R™ x R™ — R and is called the Lagrangian. \q,...,\,, are called Lagrangian

multipliers accosiated with (NLP).
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Proposition 9.3

Let

IfxeS, A>0, then

Proof. We have Z)\ifi(:f:) <0.

Let
g()‘) = minzeRnL(xv >‘)

it follows that for any A > 0 and x € S, we have
g\ < fo(x)

Thus we get a lower bound for the optimal value for any A > 0. Recall that in duality, we wanted to
find the highest lower bound, thus we want

max  g(A)
st. A>0
This is called Lagrangian Dual.
Definition 9.8: Lagrangian Dual
This is called Lagrangian Dual.
9.3.1 Weak Duality
Proposition 9.4: Weak Duality
IfzeS, A>0, then
g(A) < fo(7)
Example 9.3
Consider
inf (21 —1)% + (22 — 1)?
st. 1+ 219 —1 <0
2IE2 + o — 1 S 0
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Then we have
Lz, \) = (z1—1)2+ (22 — 1)*+
Mz + 220 — 1)+
A2(2x9 + 29 — 1)

(Check if L(z, ) is convex on x for fixed \). We wish to solve for g(A\) = mingegz L(x, \). Compute to
solve V,L(z, \) = 0 we obtain

2(rp — 1)+ A +2X2) (0

2y — 1)+ 20 4+ o) \0O

=M= 20
o 2

which yields us the solution

20— N

1
9 +

x] +1 and x5
Thus we have
L(z*,\) = —1.25M% — 1.250% — 2\1 \a + 2\ 42X\

so
sup  g(A) _ sup L(z%,A)
st. A >0 CostoA >0
4 4 11 . .
For A = (9, 9)7 we have L(z*, ) = 8/9. We also have fy (37 3) =8/9. So (1/3,1/3) is our optimal
solution.
Note 9.4

Here comes a natural question to ask: “When does strong duality hold?”
For now, let us assume that fo, f1,..., f are all convex. Also assume that there exists Z such that
fi(lf)<07 Vi=1,...,m

9.4 Slater’s Condition

Definition 9.9: Slater’s Condition

The existence of such z is called the Slater’s Condition.

Theorem 9.4

If fo, f1,. .., fm are all convex, p* is finite, and Slater’s condition holds, then there exists A* such that
inf
inf L(z,\") = inf fo(x) )
z€R" st fi(z) <0, Vi=1,...,m
—_———
g(A*)
Proof. Later (see 9.6.1). O
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Example 9.4
Consider
inf w
st. x2<0

Hence & = 0 is our only feasible solution, which is hence optimal. Notice that Slater’s condition does

not hold here. Here, we have
L(z,\) = 2 + \z?

and
—oco ifA=0

g(\) = mingz + \2? =
iftA>0

1
2N
which is an counter example of the above theorem when Slater’s condition does not hold, proving it is

necessary.

Suppose we have z*, \* optimal for primal/ dual (not always exist), then
m

g(A") = mingcpn [fo(x) + ZAffi(l“)]
i=1

< fo(z™) + Z)\;kfz(x*)
i=1
< fo(z™)

If we want strong duality to hold, i.e.,
9(\*) = fo(z")
Hence we want both inequalities above to hold as equality.

1. If the first inequality holds as equality: we know that x* is optimal solution to
mingegn fo(x) + Z A fi(x) = mingegn Lz, A*)
i=1
This means that mingegn L(x, \*) = L(z*, \*). If fo, f1,..., fm are all convex and differentiable, then
V.L(z*,\*) =0
Strongerly, if fo, f1,..., fm are all differentiable, then
V.L(z*,\*)=0

Hence strong duality tells us that if f’s are differentiable, then

Vio(z™) + > AV fi(z*) =0
=1
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2. If the second inequality holds as equality: we know that
Al fi(x®) =0, Vi=1,....m

which is the complementary slackness-type. Because it implies that we have (inclusive or)

’ A=0 or fi(z*) =0 ‘

3

Lecture 22 - Thursday, November 28

9.5 Karush-Kuhn-Tucker Conditions
Definition 9.10: Karush-Kuhn-Tucker Conditions

1. filz) <0, foralli=1,...,m
22220
3. Nfilz)=0foralli=1,...,m
4. Vfo(x)+ Z:il AVfi(x)=0

Consider .

v A €0 Vicd.m (NLP)

where f; are differentiable.

9.5.1 Necessary Optimality Conditions

Theorem 9.5: Necessary Optimality Conditions

Suppose Z, A are feasible for (NLP) and its dual such that fo(z) = g()\), then KKT conditions hold.

Note 9.5
For p* and d* defined by
w inf fo(af)
C st filw) <0 Vi=1....m
and
s g
st A >0
We may have
1. p* > d*, or

2. p* = d* but there does not exist (Z, ) such that they satisfy KKT.
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9.5.2 Sufficient Optimality Conditions

Theorem 9.6: Sufficient Optimality Conditions

If Z, X satisfy KKT and f; is differentiable and convex for all i =0, ..., m, then

fo(@) = g(A)

9.6 Summary on NLP’s

Generic (NLP) | Generic and Differentiable | Convex | Convex and differentiable
Weak Duality, d* < p* Yes Yes Yes Yes
Slater = 3\ : g(\) = p* No No Yes Yes
Necassary KKT No Yes No Yes
Sufficient KKT No No No Yes

Example 9.5

Consider the example
inf (21 —1)% + (22 — 1)?
st. x1+ 215 —1 <0
209 + a9 — 1 <0

Then for the fourth condition in KKT, we have
2(x; — 1 1 2
(£C1 ) + M + Ao =0
2(zg — 1) 2 1

=N -2
a 2

which could further gives

=20 =\
o 2

*

x] +1 and x5 +1

Then, one can try to see which )\; is allowed to be zero by going through all the four possibilities to
get a KKT point.

9.6.1 Slater’s Condition Proof

Proof. This is the proof for the Theorem (9.4) in regards to Slater’s Condition.
Let

g= {(fo(x)7...,fm(x)) eRme:xeR”}

Also let
A= {(t,u) ERXR™:JxeRst. folz) <t fi(z) < uz}

Here are two examples for the sake of illustration
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Example 9.6

For instance, consider

so we have G = {(z — 1)%,(z — 3)? = 5:2 € R"}
10 %

u g
5 A
t
—2 2 4 6 8 110
_5 ¥/

Example 9.7

For instance, consider

so we have G = {e”, (z — 3)? =5 : 2 € R"}

10 % G

Claim 1: A is a convex set

Proof of claim 1: exercise.
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Claim 2: we have p* =inf{t: (t,0,,) € A}
Proof of claim 2: For any (t,0) € A, there exists Z such that

fo@ <t and  fi(7) <0
This implies that p* < t. If for some € > 0 we have p* + ¢, then this implies that there exists & such that
fo(z) <p*+e and fi(z) <0 Vie[m]

because p* = inf fy(x) such that f;(x) < 0. Furthermore, this means that p* + ¢ is not a lower bound on
t:(t,0) €A
Also fix A > 0. We consider

g(\) :=inf L(z, \) st. zeR"

Claim 3: we have
g(\) = inf {t + Zj\iui (t,u) € A}
i=1

Proof of Claim 3: We have

which implies that
g <t Nu; YV (tu) e A

and if € > 0, consider g(\) + ¢, there exists Z such that g(\) + & > L(z, \), which implies that there exists
(t,u) € A such that

=1

Now let B = {(s,0) € RxR™: s < p*}. We know that B is a convex set and BN .A = @. This implies that
there exists 7, A € R x R such that (3,A) # 0 and & € R such that

MNou+ 5t > a, Y (t,u) € A
Mu+ 7t < a, Y (t,u) € B

But since we can increase u, t arbitrarily large by the definition of A, we must have X, > 0.
Lecture 23 - Tuesday, December 03

For (s,0) € B,

1. Case 1: 4>0
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We define \* := —, so for all z € R", we have

2] >

SN filw)+ folz) =p* = g(\) =p*
=1

and since weak duality holds, or g(A*) < p*, we must have g(A*) = p*.

2. Case 1: A4=0
For all x € R", we get

Y Aifi(x) 20
=1

Let & be such that f;(x) < 0 for all i = 1,...,m. Combining with the fact that X\ > 0, we must have

A = 0. However, this contradicts the fact that (A, %) # 0.

9.7 Sufficient Conditions for Having Optimal Solution to (NLP)
Theorem 9.7

If fp is continuous and feasible region is compact, then the (NLP) has an optimal solution.

Theorem 9.8

If there exists « such that the set

{IGR": fo(2)

a
fi(x) 0, Vi=1,...,m

is non-empty, closed, and bounded, and fy is continuous. Then there exists an optimal solution.

INIA
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10 Algorithms for Convex NLP

10.1 Unconstrained Problems

Consider the program
min  fo(x)
st. zeR”

Our goal is to find z* such that V fo(z*) = 0.

10.1.1 Descent Methods
Algorithm 10.1
1. Start from 2? € R";
2. Find d* € R™ such that
(@) Vfola') <0
3. Find step size t*;

4. ghtl — gk 4 thgk,

10.2 Constrained Problems

Consider the problem
min  fo(z)
st fi(z) <0, Vi=1,....m

We also assume the following things:
e There exists an optimal solution;
e f is convex and differentiable;
o Slater’s Condition holds here.

Our problem is equivalent to

where we define I_ : R — RU {o0} by

I am going to be really Handwavy

Ricardo Fukasawa



Instead we consider the function

— (2) log(—u), for ( >0

which has the image as

Example 10.1: Plot of the function — (%) log(z) for { =1 and 2

—(=1

—< = (%) log(x)

N W = Ot

Observe that our function is continuous and convex. Hence we wish to solve the unconstrained problem:

min  fo(z) + Y0, (*%) log(—fi(z))

st. xeR™
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11 Comments on CO Courses

e Discrete Optimization:

C0O452 C0450 CO0O353

e NLP:
C0o367 CO4T1(SDP) C0463(Convex)

e Network Flows:
C0351

e Game Theory
CO456
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Linear Program, 5
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